Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New quantum sensing technology reveals sub-atomic signals
News

New quantum sensing technology reveals sub-atomic signals

January 11, 2025No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
New quantum sensing technology reveals sub-atomic signals
An artistic representation of the minute nucleic differences detectable using the form of nuclear quadrupolar resonance described in the new paper. Credit: Mathieu Ouellet

Since the 1950s, scientists have used radio waves to uncover the molecular “fingerprints” of unknown materials, aiding in tasks as varied as scanning the human body with MRI machines and detecting explosives at airports.

These methods, however, rely on signals averaged from trillions of atoms, making it impossible to detect tiny variations between individual molecules. Such limitations hinder applications in fields like protein research, where small differences in shape control functionality and can determine the difference between health and disease.

Now, engineers at the University of Pennsylvania School of Engineering and Applied Science (Penn Engineering) have utilized quantum sensors to realize a groundbreaking variation of nuclear quadrupolar resonance (NQR) spectroscopy, a technique traditionally used to detect drugs and explosives or analyze pharmaceuticals.

Described in Nano Letters, the new method is so precise that it can detect the NQR signals from individual atoms—a feat once thought unattainable. This unprecedented sensitivity opens the door to breakthroughs in fields like drug development, where understanding molecular interactions at the atomic level is critical.

“This technique allows us to isolate individual nuclei and reveal tiny differences in what were thought to be identical molecules,” says Lee Bassett, Associate Professor in Electrical and Systems Engineering (ESE), Director of Penn’s Quantum Engineering Laboratory (QEL) and the paper’s senior author.

“By focusing on a single nucleus, we can uncover details about molecular structure and dynamics that were previously hidden. This capability allows us to study the building blocks of the natural world at an entirely new scale.”

An unexpected discovery

The discovery stemmed from an unexpected observation during routine experiments. Alex Breitweiser, a recent doctoral graduate in Physics from Penn’s School of Arts & Sciences and the paper’s co-first author, who is now a researcher at IBM, was working with nitrogen-vacancy (NV) centers in diamonds—atomic-scale defects often used in quantum sensing—when he noticed unusual patterns in the data.

See also  Unleashing a New Era of Color-Tunable Nano-Devices – The Smallest Ever Light Source With Switchable Colors

The periodic signals looked like an experimental artifact, but persisted after extensive troubleshooting. Returning to textbooks from the 1950s and ’60s on nuclear magnetic resonance, Breitweiser identified a physical mechanism that explained what they were seeing, but that had previously been dismissed as experimentally insignificant.

Advances in technology allowed the team to detect and measure effects that were once beyond the reach of scientific instruments. “We realized we weren’t just seeing an anomaly,” Brietweiser says. “We were breaking into a new regime of physics that we can access with this technology.”

Unprecedented precision

Understanding of the effect was further developed through collaboration with researchers at Delft University of Technology in the Netherlands, where Breitweiser had spent time conducting research on related topics as part of an international fellowship. Combining expertise in experimental physics, quantum sensing and theoretical modeling, the team created a method capable of capturing single atomic signals with extraordinary precision.

“This is a bit like isolating a single row in a huge spreadsheet,” explains Mathieu Ouellet, a recent ESE doctoral graduate and the paper’s other co-first author.

“Traditional NQR produces something like an average—you get a sense of the data as a whole, but know nothing about the individual data points. With this method, it’s as though we’ve uncovered all the data behind the average, isolating the signal from one nucleus and revealing its unique properties.”

Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
Sign up for our free newsletter and get updates on breakthroughs,
innovations, and research that matter—daily or weekly.

See also  Titanium micro-spikes skewer resistant superbugs

Deciphering the signals

Determining the theoretical underpinnings of the unexpected experimental result took significant effort. Ouellet had to carefully test various hypotheses, running simulations and performing calculations to match the data with potential causes.

“It’s a bit like diagnosing a patient based on symptoms,” he explains. “The data points to something unusual, but there are often multiple possible explanations. It took quite a while to arrive at the correct diagnosis.”

Looking ahead, the researchers see vast potential for their method to address pressing scientific challenges. By characterizing phenomena that were previously hidden, the new method could help scientists better understand the molecular mechanisms that shape our world.

Provided by
University of Pennsylvania



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Dual-site catalyst transforms CO₂ into renewable methanol

News

MXene production goes green: Electricity replaces toxic acid

News

Metallic nanosheets curl into nanovesicles

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Material discovery may help realize low-cost and long-life memory chips

August 24, 2023

New nanocavities unlock new frontiers in light confinement

February 16, 2024

Unraveling Nanotechnology’s Promising Role in Inflammatory Bowel Disease Management

August 9, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel