Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New quantum dot approach can enhance electrical conductivity of solar cells
News

New quantum dot approach can enhance electrical conductivity of solar cells

May 28, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New quantum dot approach can enhance electrical conductivity of solar cells
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

A team led by Professor Jongmin Choi of the Department of Energy Science and Engineering has developed a PbS quantum dot that can rapidly enhance the electrical conductivity of solar cells. The findings are published in the journal Small.

The team identified a method to enhance electrical conductivity through the use of “pulse-shaped” light, which generates substantial energy in a concentrated manner at regular intervals. This method could replace the heat treatment process, which requires a significant amount of time to achieve the same result. This approach is expected to facilitate the production and commercialization of PbS quantum dot solar cells in the future.

PbS quantum dots are nanoscale semiconductor materials that are being actively researched for the development of next-generation solar cells. They can absorb a wide range of wavelengths of sunlight, including ultraviolet, visible light, near-infrared, and shortwave infrared, and have low processing costs because of solution processing and excellent photoelectric properties.

The fabrication of PbS quantum dot solar cells involves several process steps. Until recently, the heat treatment process was considered an essential step as it effectively coats a layer of quantum dots onto a substrate and heat-treats the material to further increase its electrical conductivity.

However, when PbS quantum dots are exposed to light, heat, and moisture, the formation of defects on their surface can be accelerated, leading to charge recombination and deterioration of device performance. This phenomenon makes it challenging to commercialize these materials.

To suppress the formation of defects on the surface of PbS quantum dots, a team led by Professor Choi proposed a heat treatment involving the exposure of the dots to light for a brief period of a few milliseconds. Conventional techniques for heat-treating PbS quantum dot layers involve heating them for tens of minutes at high temperatures using hot plates, ovens, etc.

See also  Nanoparticle-delivered RNA reduces neuroinflammation in lab tests

The research team’s proposed “pulse-type heat treatment technique” overcomes the shortcomings of the existing method by using strong light to complete the heat treatment process in a few milliseconds. This results in the suppression of surface defects and the extension of the traveling life of charges (electrons, holes) that generate electric current. Furthermore, it achieves high efficiency.

“Through this research, we were able to improve the efficiency of solar cells by developing a new heat treatment process that can overcome the limitations of the existing quantum dot heat treatment process,” said Professor Choi of the Department of Energy Science and Engineering at DGIST.

“Furthermore, the development of a quantum dot process with excellent ripple effect is expected to facilitate the widespread application of this technology to a range of optoelectronic devices in the future.”

This research was done in collaboration with Professor Changyong Lim of the Department of Energy Chemical Engineering at the Kyungpook National University and Professor Jongchul Lim of the Department of Energy Engineering at the Chungnam National University.

Provided by
DGIST (Daegu Gyeongbuk Institute of Science and Technology)


Source link

approach cells conductivity Dot Electrical Enhance quantum Solar
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

New nanotech weapon takes aim at hard-to-treat breast cancer

News

Laser-Scribed Graphene | A Guide

Research

Unveiling the Impact of Nanotech Innovation and Funding

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists create the thinnest lens on Earth, enabled by excitons

June 7, 2024

Researchers develop gold nanowire spectroscopy system to reveal how trions are generated

February 10, 2024

Researchers develop high-sensitivity technique to detect mercury in soil

August 6, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel