Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New nanoparticle delivery method targets sickle cell mutations in bone marrow
News

New nanoparticle delivery method targets sickle cell mutations in bone marrow

July 29, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Gene editing approach could offer new hope to sickle cell patients
Discovery and development of BM-homing LNPs. a, Schematic of LNP preparation including covalent lipid species (covalent lipids and crosslinkers). b, Addition of a covalent lipid or crosslinker to the base-4-lipid LNP formulation leads to BM mRNA delivery and genome editing in a great breadth of unique BM cell types. c,d, Bioluminescence images of dissected femurs and summary of the average bioluminescence signal intensity on dissected femurs represented for covalent lipid (c) and crosslinker (d) molecular structures. Credit: Nature Nanotechnology (2024). DOI: 10.1038/s41565-024-01680-8

Current gene therapies to treat sickle cell disease are complex, time-consuming, and are sometimes linked to serious side effects like infertility or blood cancer. To address these challenges, Johns Hopkins researchers have developed special nanoparticles that can send gene treatment directly to various types of cells in bone marrow to correct the disease-causing mutations.

“This gene editing approach would allow patients to receive the medicine through a transfusion,” said study lead author Xizhen Lian, an assistant research scientist affiliated with the Johns Hopkins Whiting School of Engineering’s Institute for NanoBioTechnology and the Johns Hopkins School of Medicine.

“This avoids the lengthy, difficult process of many current gene therapies, decreasing the burden on patients and the health care system while minimizing treatment side effects.”

Their results are published in Nature Nanotechnology.

The research team, which included scientists at the University of Texas Southwestern Medical Center, St. Jude Children’s Research Hospital, Harvard University, and Johns Hopkins School of Medicine, used CRISPR/Cas and base gene-editing techniques in a mouse model of sickle cell disease to activate a form of hemoglobin and correct the sickle cell mutation. The team also found the approach effective in targeting leukemia cells.

“One challenge we encountered is that the stem cell population is very small; only 0.1% of cells in bone marrow are stem cells. They are also protected in a micro-environment that can prevent the delivery of drugs from circulation,” Lian said.

The team solved this problem by adding a special fat molecule into their tiny delivery particles. This new molecule helped the delivery particles find and strongly attach to the stem cells, delivering important gene therapy.

See also  Investigating Magnetization in Artificial Spin Ice

The team’s next step is to optimize this technology on a humanized animal model that can better mimic clinical scenarios, as they are currently working solely with rodent blood cells and components. Humanized animal models have been genetically modified to express human genes, cells, and proteins, allowing researchers to study human diseases in a living system that closely resembles that of humans.

“Our approach promises to help patients avoid invasive treatment procedures, which will significantly reduce the side effects of blood cancer because there is no random gene insertion into the patient’s genes. We are targeting a specific gene that causes the disease and that’s it,” Lian said. “The only way to cure such genetic diseases is to correct the genetic mutation in the stem cell populations.”

Provided by
Johns Hopkins University



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Study shows cholesterol enhances exosome-mediated RNA drug delivery

News

Scientists discover nanofabrication of photonic crystals on buried ancient Roman glass

News

Solving mysteries of metallic glass at the nanoscale

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Revolutionary Graphene Interfaces Set to Transform Neuroscience

March 15, 2024

Scientists uncover light absorbing properties of achiral materials

October 8, 2024

Scientists Discover Hidden Neural Network-Like Abilities of Self-Assembling Molecules

February 10, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel