Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New molecules, inspired by space shuttles, advance lipid nanoparticle delivery for weight control
News

New molecules, inspired by space shuttles, advance lipid nanoparticle delivery for weight control

March 6, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New molecules, inspired by space shuttles, advance lipid nanoparticle delivery for weight control
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The new molecules, inspired by the design of the space shuttle’s twin booster rockets, improve the efficacy of lipid nanoparticles for drug delivery while simplying their manufacture. Credit: Mitchell Lab

Inspired by the design of space shuttles, Penn Engineering researchers have invented a new way to synthesize a key component of lipid nanoparticles (LNPs), the revolutionary delivery vehicle for mRNA treatments including the Pfizer-BioNTech and Moderna COVID-19 vaccines, simplifying the manufacture of LNPs while boosting their efficacy at delivering mRNA to cells for medicinal purposes.

In a paper in Nature Communications, Michael J. Mitchell, Associate Professor in the Department of Bioengineering, describes a new way to synthesize ionizable lipidoids, key chemical components of LNPs that help protect and deliver medicinal payloads. For this paper, Mitchell and his co-authors tested delivery of an mRNA drug for treating obesity and gene-editing tools for treating genetic disease.

Previous experiments have shown that lipidoids with branched tails perform better at delivering mRNA to cells, but the methods for creating these molecules are time- and cost-intensive. “We offer a novel construction strategy for rapid and cost-efficient synthesis of these lipidoids,” says Xuexiang Han, a postdoctoral student in the Mitchell Lab and the paper’s co-first author.

The method involves combining three chemicals: an amine “head,” two alkyl epoxide “tails” and, finally, two acyl chloride “branched tails.” The completed lipidoid’s resemblance to a space shuttle strapped to two booster rockets is not coincidental: in college, recalls Han, a documentary about the space shuttle left him impressed with the design of solid rocket boosters that enabled the shuttle to enter orbit. “I figured that we could append two branch tails as ‘boosters’ into the lipidoid to promote the delivery of mRNA,” says Han.

See also  Nanomedicine researchers develop new technology to control neural circuits using magnetic fields

Indeed, the addition of the branched tails led to a striking increase in the ability of LNPs equipped with the new lipidoid to deliver mRNA to target cells, much like a rocket whose boosters allow it to more easily penetrate the atmosphere. “We saw a dramatic increase of a hormone that regulates metabolism to target cells after delivering mRNA using these lipidoids, which is really exciting when you consider it as a way to treat obesity,” says Mitchell.

Provided by
University of Pennsylvania



Source link

Advance control delivery inspired Lipid molecules Nanoparticle shuttles space weight
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

Comments are closed.

Top Articles
News

Researchers discover tightest arrangement of bilayer alkali metals between graphene layers

Researchers use multi-phase composition and electrospinning to fabricate SiOC nanofibers

News

Hexagons of hexagonal boron nitride join up to form 2D insulator for next-gen electronic devices

Editors Picks

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

High-Pressure Homogenization for Cell Disruption

November 14, 2024

Design strategies toward plasmon-enhanced 2D material photodetectors

May 6, 2024

Which Nanomedicines Will Transform the World of Healthcare?

October 31, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel