Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New microchip captures exosomes for faster, more sensitive lung cancer detection from a blood draw
News

New microchip captures exosomes for faster, more sensitive lung cancer detection from a blood draw

October 14, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New microchip captures exosomes for faster, more sensitive lung cancer detection from a blood draw
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The twisted disk shape of the gold nanoparticle creates chirality, or asymmetry, ensuring strong interaction with light. The less than 100 nanometer-wide cavity in the center helps the nanoparticle capture exosomes. Credit: University of Michigan

A new way of diagnosing lung cancer with a blood draw is 10 times faster and 14 times more sensitive than earlier methods, according to University of Michigan researchers.

The microchip developed at U-M captures exosomes—tiny packages released by cells—from blood plasma to identify signs of lung cancer.

Once thought to be trash ejected from cells for cleanup, researchers have discovered in the past decade that exosomes are tiny parcels containing proteins or DNA and RNA fragments that are valuable for communication between cells. Although healthy cell exosomes move important signals throughout the body, cancer cell exosomes can help tumors spread by preparing tissues to accept tumor cells before they arrive.

“Cancer exosomes leaving the tumor microenvironment go out and kind of prepare the soil. Later, the cancer cell seeds are shed from the tumor and travel through the bloodstream to plant in the conditioned soil and start to grow,” said Sunitha Nagrath, U-M professor of chemical and biomedical engineering and co-corresponding author of the study in the journal Matter.

Exosomes carry proteins both inside the parcel and on their outside surface. Like many biological molecules, these surface proteins are chiral—meaning they have a right- or left-handed twist—which causes them to interact with light in unique ways.

Faster, more sensitive lung cancer detection from a blood draw
A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip capable of detecting signatures of lung cancer from blood plasma samples. Image dimensions are 2 x 2 micrometers (2000 x 2000 nanometers). Credit: Matter (2024). DOI: 10.1016/j.matt.2024.09.005

In cancer exosomes, surface proteins are often mutated, meaning a genetic change altered the order of the molecules that make up the protein. Mutations subtly change the shape of the protein, which also shifts its chirality.

These differences can be spotted through interactions with twisted—or circularly polarized—light, which can match the twist in the protein. The resonance creates a strong signal returned to a light detector. However, these light signatures are typically weak and hard to interpret. Furthermore, exosomes must be extracted from a blood sample to do this kind of detection. This is tricky because exosomes are small—measuring just 30 to 200 nanometers (a millionth of a millimeter).

See also  DNA origami vaccine DoriVac paves way for personalized cancer immunotherapy

To spot them, the research team designed gold nanoparticles shaped like twisted disks (adapted from a structure first described in a 2022 Nature study) that capture exosomes in a central cavity. Because of a nearly perfect match in size, shape and surface chemistry, these cavities reliably catch exosomes.

With a right-handed twist, they resonate strongly with right-twisting light but don’t send back much signal if the incoming light has a left-handed twist. This different response to twisted light is known as circular dichroism.

The proteins on the captured exosomes, sunk into the cavity, can strengthen or reduce the intensity of the return signal depending on their shapes. Studded along the tiny channels of a microfluidic chip, the gold cavities captured exosomes from blood plasma and revealed distinct signatures between samples given by healthy study participants and those with lung cancer.

New microchip uses exosomes for faster, more sensitive lung cancer detection from a blood draw
Graphical abstract. Credit: Matter (2024). DOI: 10.1016/j.matt.2024.09.005

“While I expected the optical activity of nanoparticles to be dependent on the mutations in the proteins, I was pleasantly surprised at how sensitive it was. This is due to the fact that nanoparticles are all oriented in the same way in the detection device,” said Nicholas Kotov, the Irving Langmuir Distinguished University Professor of Chemical Sciences and Engineering at U-M and co-corresponding author of the study.

The microfluidic chips, named CDEXO chips for Circular Dichroism detection of EXOsomes, may be able to distinguish among specific lung cancer mutations, helping doctors make treatment decisions to target the dominant mutations as they change.

The researchers envision that the CDEXO chip will first be used alongside traditional diagnostic methods. As trust in the technology develops, the chip could be used to screen for other cancers to improve early detection.

See also  Study enhances understanding of likely candidate for next-generation chips

“As a next step, we want to look at most known solid tumor mutated proteins to understand how their spectral signatures are different. From here, we can push the technology to further increase those spectral differences to distinguish between proteins,” Nagrath said.

Provided by
University of Michigan



Source link

blood cancer Captures detection draw exosomes faster lung microchip Sensitive
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

MXene-enhanced plasmonic sensing developed for ultrasensitive label-free miRNA detection

News

Enhancing Smart Manufacturing with In-Line Process Optimization Using Spectroscopy

News

Investigation into the regime between the nano- and microscale could pave the way for nanoscale technologies

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Transistor reshapes electronic properties of a 2D material

April 5, 2025

Research team enhances hydrogen evolution catalyst through stepwise deposition

August 31, 2023

How extracellular vesicles aid tumor spread

March 26, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel