Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New method captures the stochastic dynamics in coherent X-ray imaging at the nanoscale
News

New method captures the stochastic dynamics in coherent X-ray imaging at the nanoscale

September 14, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New method captures the stochastic dynamics in coherent X-ray imaging at the nanoscale
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Multiple snapshots reveal, through a X-ray diffraction pattern, the features of an ultrafast stochastic process. Credit: Arnab Sarkar, Allan Johnson

Coherent X-ray imaging has emerged as a powerful tool for studying both nanoscale structures and dynamics in condensed matter and biological systems. The nanometric resolution together with chemical sensitivity and spectral information render X-ray imaging a powerful tool to understand processes such as catalysis, light harvesting or mechanics.

Unfortunately, these processes might be random or stochastic in nature. In order to obtain freeze-frame images to study stochastic dynamics, the X-ray fluxes must be very high, potentially heating or even destroying the samples. Also, detectors acquisition rates are insufficient to capture the fast nanoscale processes.

Stroboscopic techniques allow imaging ultrafast repeated processes. But only mean dynamics can be extracted, ruling out measurement of stochastic processes, where the system evolves through a different path in phase space during each measurement. These two obstacles prevent coherent imaging from being applied to complex systems.

Allan Johnson and Arnab Sarkar from IMDEA Nanociencia institute (Madrid) have conceived a new method to directly recover the signal in a wide variety of systems currently unobtainable with existing approaches. The researchers have shown that, leveraging the coherence intrinsic to these methods, it is possible to separate out the stochastic and deterministic contributions to a coherent X-ray scattering pattern, returning real space images of the deterministic contributions, and the momentum spectrum of the stochastic contributions.

Stochastic processes are widespread at the nanoscale, where thermal or quantum effects become highly significant. For instance, quantum materials often show stochastic motion of charge carriers, vortices or domain walls. Because of the difficulty in forming real space images of such stochastic processes, fluctuations are generally studied through alternative methods that return the statistical properties.

See also  New method links graphene nanolayers for tougher, elastic films

Single-shot measurements, performed at free electron lasers, could allow snapshots of fluctuations, although may not be possible in many systems due to damage concerns. Recently, coherent correlation imaging has been used to group similar frames in repeated measurements until the signal-to-noise is sufficient to reconstruct real images. This technique is a major methodological advance, but still requires enough flux in order to ensure the partial frames acquired are sufficiently complete.

In their work, recently published in Materials Advances, IMDEA Nanociencia researchers have demonstrated a new approach for separating the stochastic and deterministic (mean) contributions in coherent imaging methods.

From averaged diffraction pattern of multiple snapshots, researchers show that it is possible to isolate the stochastic part through a Fourier transform holography analysis. They have demonstrated they can return real space images of the mean fluctuations in three representative test cases: uncorrelated point-like defects (vortices), polaron-like pairs, and metallic domain walls in an insulating matrix.

By applying reconstruction methods to the scattering patterns, researchers returned a range of quantitative information: separation, size and phase shift of the polaron pairs, and size, shape, and metallic character (spectral dependence) of the domain walls.

There are many more examples of fluctuations at the nanoscale available where this method, dubbed coherence isolated diffractive imaging (CIDI), could be applied. For instance, tracking the motion of charge carriers or domain fluctuations in quantum materials.

Furthermore, the use of CIDI imaging for studying fast fluctuations does not actually require femtosecond X-ray pulses; the limitation will be given by the coherence time of the light, which determines over what time window scattering contributions can add coherently at the detector. This means it may be possible to image femtosecond fluctuations using broadband continuous wave radiation, for instance the pink-beam of a synchrotron.

See also  Plasmon-assisted catalytic CO₂ conversion method offers sustainable e-fuel production

Provided by
IMDEA Nanociencia



Source link

Captures coherent Dynamics Imaging method nanoscale stochastic Xray
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

Moving from the visible to the infrared: Developing high quality nanocrystals

News

What Are Graphene Nanoribbons?

Research

New Hope for Atherosclerosis Diagnosis and Therapy

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Researchers propose an organic-solvent-free method for producing nanosized vaterite

November 17, 2023

Cleverly designed carbon nanohoop enables controlled release of iron

April 2, 2025

New brain implant records neuron activity for months

January 28, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel