Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New Material Supercharges Electrostatic Energy Storage – 19x Energy Density
News

New Material Supercharges Electrostatic Energy Storage – 19x Energy Density

April 19, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New Material Supercharges Electrostatic Energy Storage – 19x Energy Density
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

By Shawn Ballard, Washington University in St. Louis April 18, 2024

Research has produced a ferroelectric capacitor with 19 times the energy density of current models and over 90% efficiency, using novel 2D/3D/2D heterostructures. Credit: SciTechDaily.com

Scientists have developed a new method to control the relaxation time of ferroelectric capacitors using 2D materials, significantly enhancing their energy storage capabilities. This innovation has led to a structure that improves energy density and efficiency, promising advancements in high-power electronics and sustainable technologies.

Electrostatic capacitors play a crucial role in modern electronics. They enable ultrafast charging and discharging, providing energy storage and power for devices ranging from smartphones, laptops, and routers to medical devices, automotive electronics, and industrial equipment. However, the ferroelectric materials used in capacitors have significant energy loss due to their material properties, making it difficult to provide high energy storage capability.

Innovations in Ferroelectric Capacitors

Sang-Hoon Bae, assistant professor of mechanical engineering and materials science in the McKelvey School of Engineering at Washington University in St. Louis, has addressed this long-standing challenge in deploying ferroelectric materials for energy storage applications.

In a study published today (April 18) in the journal Science, Bae and his collaborators, including Rohan Mishra, associate professor of mechanical engineering & materials science, and Chuan Wang, associate professor of electrical & systems engineering, both at WashU, and Frances Ross, the TDK Professor in Materials Science and Engineering at MIT, introduced an approach to control the relaxation time – an internal material property that describes how long it takes for charge to dissipate or decay – of ferroelectric capacitors using 2D materials.

See also  Digging into the details of an ambitious new 'thermometry camera'

Developing Novel Heterostructures

Working with Bae, doctoral student Justin S. Kim and postdoctoral researcher Sangmoon Han developed novel 2D/3D/2D heterostructures that can minimize energy loss while preserving the advantageous material properties of ferroelectric 3D materials.

Their approach cleverly sandwiches 2D and 3D materials in atomically thin layers with carefully engineered chemical and nonchemical bonds between each layer. A very thin 3D core is inserted between two outer 2D layers to create a stack only about 30 nanometers thick. That’s about one-tenth the size of an average virus particle.

Breakthrough in Energy Storage

“We created a new structure based on the innovations we’ve already made in my lab involving 2D materials,” Bae said. “Initially, we weren’t focused on energy storage, but during our exploration of material properties, we found a new physical phenomenon that we realized could be applied to energy storage, and that was both very interesting and potentially much more useful.”

The 2D/3D/2D heterostructures are finely crafted to sit in the sweet spot between conductivity and nonconductivity where semiconducting materials have optimal electric properties for energy storage. With this design, Bae and his collaborators reported an energy density up to 19 times higher than commercially available ferroelectric capacitors, and they achieved an efficiency of over 90%, which is also unprecedented.

Impact on Next-Generation Electronics

“We found that dielectric relaxation time can be modulated or induced by a very small gap in the material structure,” Bae explained. “That new physical phenomenon is something we hadn’t seen before. It enables us to manipulate dielectric material in such a way that it doesn’t polarize and lose charge capability.”

See also  Nanoparticle-based delivery system could offer treatment for diabetics with rare insulin allergy

As the world grapples with the imperative of transitioning toward next-generation electronics components, Bae’s novel heterostructure material paves the way for high-performance electronic devices, encompassing high-power electronics, high-frequency wireless communication systems, and integrated circuit chips. These advancements are particularly crucial in sectors requiring robust power management solutions, such as electric vehicles and infrastructure development.

Future Directions and Applications

“Fundamentally, this structure we’ve developed is a novel electronic material,” Bae said. “We’re not yet 100% optimal, but already we’re outperforming what other labs are doing. Our next steps will be to make this material structure even better, so we can meet the need for ultrafast charging and discharging and very high energy densities in capacitors. We must be able to do that without losing storage capacity over repeated charges to see this material used broadly in large electronics, like electric vehicles, and other developing green technologies.”

Reference: “High energy density in artificial heterostructures through relaxation time modulation” 18 April 2024, Science.
DOI: 10.1126/science.adl2835

Han S, Kim JS, Park E, Meng Y, Xu Z, Foucher AC, Jung GY, Roh I, Lee S, Kim SO, Moon JY, Kim SI, Bae S, Zhang X, Park BI, Seo S, Li Y, Shin H, Reidy K, Hoang AT, Sundaram S, Vuong P, Kim C, Zhao J, Hwang J, Wang C, Choi H, Kim DH, Kwon J, Park JH, Ougazzaden A, Lee JH, Ahn JH, Kim J, Mishra R, Kim HS, Ross FM, and Bae SH. High energy density in artificial heterostructures through relaxation time modulation. Science, April 18, 2024. DOI: X

See also  Researchers use new new cobalt-modified nano material to make fuel cells more robust, sustainable

This work was supported by the National Science Foundation (2240995, DMR-2122070 and DMR-2145797), Samsung Electronics Co., Ltd. (IO221219-04250-01), the Korea Institute for Advancement of Technology (P0017305), the National Research Foundation of Korea (2015R1A3A2066337), and the Army Research Office’s Multidisciplinary University Research Initiative (W911NF-21-1-0327). This work used computational resources through allocation DMR160007 from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) program, which is supported by NSF.


Source link

19x density Electrostatic energy Material Storage Supercharges
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Comments are closed.

Top Articles
News

Researchers’ crystal engineering modifies 2D metal halide perovskites into 1D nanowires

Study enhances understanding of likely candidate for next-generation chips

News

Material discovery may help realize low-cost and long-life memory chips

Editors Picks

Ultrathin resonators set new standard for efficient light manipulation

June 7, 2025

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Water purifier is powered by static electricity from your body

April 12, 2024

Sugar-coated nanotherapy dramatically improves neuron survival in Alzheimer’s model

May 25, 2025

New molecular compound designed with technological applications at the nanoscale

April 12, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel