Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New DNA origami technique promises advances in medicine
News

New DNA origami technique promises advances in medicine

May 19, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New DNA origami technique promises advances in medicine
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Graphical abstract. Credit: Journal of the American Chemical Society (2024). DOI: 10.1021/jacs.4c03413

A new technique in building DNA structures at a microscopic level has the potential to advance drug delivery and disease diagnosis, a study suggests.

A team of scientists, from the universities of Portsmouth and Leicester in the UK, has developed an innovative way to customize and strengthen DNA origami.

DNA origami is the method of creating nanostructures with remarkable precision using DNA strands as building blocks. However, these structures are delicate and can fall apart easily under biological conditions, like changes in temperature or exposure to certain enzymes found in living organisms.

In a paper, published in the Journal of the American Chemical Society, researchers have presented a unique way to make the origami structures stronger and more versatile in a one-pot reaction, via a process known as triplex-directed photo-cross-linking.

By strategically modifying DNA strands during the design process, they were able to introduce additional nucleotide sequences—which are the basic building blocks of DNA—that serve as attachment points for functional molecules.

Attachment of the molecules was achieved by using triplex-forming oligonucleotides carrying a cross-linking agent. They then used a chemical process involving UVA light to permanently link these molecules to the DNA shapes.

A particular benefit of this approach is the generation of “super-staples” that act to weave the structure together. The paper says cross-linking to regions outside of the origami core dramatically reduces the structure’s sensitivity to heat and disassembly by enzymes.

Senior author, Dr. David Rusling from the University of Portsmouth’s School of Pharmacy and Biomedical Sciences, said, “The potential applications of this technique are far-reaching. The ability to tailor DNA origami structures with specific functionalities holds immense promise for advancing medical treatments and diagnostics.

See also  WFIRM leads $40M regenerative medicine initiative for the wounded and beyond

“We envision a future where DNA origami structures could be used to deliver drugs or DNA directly to diseased cells, or to create highly sensitive diagnostic tools.”

Current applications of DNA origami in biomedicine include vaccines, biological nanosensors, drug delivery, structural biology, and delivery vehicles for genetic materials.

Co-author Dr. Andrey Revyakin, formerly from the University of Leicester, said, “My lab has struggled for years to make DNA origami structures that remain functional in real-life biological applications. Dr. Rusling’s triplex-based method, which ‘upgrades’ the classical DNA double-helix with an additional, third strand, stabilizes the DNA shapes, and does so with great precision, without affecting the functional modules of the molecule.”

The paper says the new strategy is scalable and cost-effective, as it works with existing origami structures, does not require scaffold redesign, and can be achieved with just one DNA strand.

Dr. Rusling added, “What is really exciting about this technique is that it did not change the underlying origami DNA sequence, offering the ability to use these structures as carriers for synthetic genes.”

Provided by
University of Portsmouth



Source link

Advances DNA medicine origami Promises Technique
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Comments are closed.

Top Articles
Technology

Injections of drug-filled nanoparticles may relieve arthritis pain

Medical

Neural implants face ethical hurdles, study finds

News

What is an Atomic Force Microscope?

Editors Picks

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New method to synthesize amorphous metal-organic frameworks and coordination polymers

July 21, 2024

Bacteria in polymers create cable-like structures that grow into living gels

January 28, 2025

Researchers use AI to accelerate the chase for safer, better batteries

June 8, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel