Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New carbon nanotube transistor enhances sensitivity and resolution of molecule glasses
News

New carbon nanotube transistor enhances sensitivity and resolution of molecule glasses

April 8, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New carbon nanotube transistor enhances sensitivity and resolution of molecule glasses
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Device schematic and concentration-dependent current traces. a, Schematics of the single aptamer immobilization onto the CNT and VLG-controlled diazonium chemistry. A common VLG is applied via a reference electrode in the buffer solution. A single functionalization site on the CNT is generated by sp3 addition controlled by VLG-driven aryl radical generation from a diazonium salt (FBDP). The amine group of a functionalized DNA aptamer is covalently attached to the site by a Schiff base reaction. b, Representative baseline ID–t trace of Device A after aptamer probe attachment in phosphate-buffered saline (pH 7.0). The VLG was fixed at 200 mV, and a VDS of 25 mV was applied. c–f, Representative ID–t traces of Device A at different serotonin concentrations: 0.5 nM (c), 5 nM (d), 50 nM (e), 500 nM (f). The raw ID–t traces (blue line) are overlaid with the idealized fit, revealing two conductance states (orange line). The histograms of ID distributions are shown in the right panels. g, Concentration dependence for the fraction of time spent in the lower conductance state (Plow). The plots of Plow against serotonin concentrations are fitted to the Langmuir isotherm function. Data points are the mean probability of the low conductance state calculated from all dwell times by bootstrapping (Nboot = 2,000). Error bars represent the 90% confidence interval from the bootstrapped mean value of Plow. Credit: Nature Nanotechnology (2024). DOI: 10.1038/s41565-023-01591-0

Researchers have developed a carbon nanotube (CNT) transistor for molecule glasses that facilitates detailed examination of molecular interactions. This innovative technology is poised to open a fresh research direction in nanotechnology and molecular biology.

Tiny particles such as finely charged serotonin and dopamine play significant roles within our bodies. Understanding their movements and interactions is crucial, but there have been constraints in capturing their subtle interactions––until now.

Using a CNT, Dr. Lee Yoon-hee, a senior researcher at the Division of Biotechnology within the Convergence Research Institute, developed a molecular research transistor, or molecule glasses, with unprecedented sensitivity and resolution. Being minuscule, the CNT has high conductivity and is both strong and flexible. Observing molecules with a CNT will allow for the examination of neurotransmitters such as serotonin and dopamine, which possess subtle electrical charges. Interactions with their bonding counterparts will also be observable.

Most importantly, Dr. Lee has applied the newly developed technology to capture structural transformation in four states of aptamer interaction with small serotonin and dopamine molecules, successfully revealing the complex and previously unknown interaction between aptamer and ligand.

The research findings are expected to be valuable tools in nanomedical and biomolecular engineering in the future, heralding advancement in the high-precision study of intermolecular interactions.

Dr. Lee stated, “This technology will open a new horizon for understanding interactions at the molecule level more closely. We aim to offer society a precise medical technology capable of controlling biological systems at the molecular level while also reducing the technological barriers and research costs associated with molecular diagnosis of diseases in the future.”

See also  Unique molecule may lead to smaller, more efficient computers

The research is published in the journal Nature Nanotechnology.

Provided by
DGIST (Daegu Gyeongbuk Institute of Science and Technology)


Source link

carbon enhances glasses Molecule nanotube resolution sensitivity transistor
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Comments are closed.

Top Articles
News

Nanopillars create tiny openings in the nucleus without damaging cells

News

Researchers realize controlled synthesis of Au-Ag heterodimer arrays for high-resolution encrypted information

News

Mechanically interlocked 2D chainmail unlocks smart polymers with shape-shifting capabilities

Editors Picks

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Chemists discover spontaneous nanoparticle formation in charged microdroplets

June 21, 2024

Nanoscale rust: The future of magnets?

October 13, 2023

A chain of copper and carbon atoms may be the thinnest metallic wire

June 22, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel