Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»New blue light-emitting lasers leverage low-toxicity colloidal quantum dots
News

New blue light-emitting lasers leverage low-toxicity colloidal quantum dots

December 4, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New blue light-emitting lasers leverage low-toxicity colloidal quantum dots
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Photograph showing the highly directional ASE under nanosecond laser excitation. Credit: Nature Nanotechnology (2024). DOI: 10.1038/s41565-024-01812-0

Blue lasers, lasers that emit a light beam with a wavelength between 400 nm and 500 nm, are key components of various technologies, ranging from high-resolution displays to printers, medical imaging tools and data storage solutions. A key advantage of these lasers is that they generate coherent and intense light beams that can be leveraged to develop highly advanced optical technologies.

One approach to developing blue lasers entails the use of colloidal quantum dots (CQDs). These are nanoscale semiconducting particles with unique optical properties associated with their size.

Lasers based on these nanoscale particles could have notable advantages, including enhanced power-efficiency and tunability. Most quantum dot-based lasers developed so far utilized cadmium (Cd) particles that emit red light, while efforts to introduce similar blue light-emitting lasers were sparser.

Researchers at the Chinese Academy of Sciences recently realized a new blue laser technology that leverages CQDs. Their proposed laser design, outlined in a paper in Nature Nanotechnology, is based on quantum dots that combine zinc selenide (ZnSe) and zinc sulfide (ZnS) in a core-shell structure.

“CQDs are solution-grown materials with strong, tunable emission covering the whole visible spectrum, but the development of QD lasers has largely relied on Cd-containing red-emitting QDs, with technologically viable blue QD lasers remaining out of reach,” wrote Xuyang Lin, Yang Yang and their colleagues in their paper.

“We report on the realization of tunable and robust lasing using low-toxicity blue-emitting ZnSe–ZnS core–shell QDs that are compact in size yet still feature suppressed Auger recombination and long optical gain lifetime approaching 1 ns.”

Blue light-emitting lasers based on low-toxicity colloidal quantum dots
Lasing directionality, coherence, polarization and stability. Credit: Nature Nanotechnology (2024). DOI: 10.1038/s41565-024-01812-0

The ZnSe–ZnS quantum dots used by this team of researchers are highly compact and have a long optical gain lifetime. The researchers leveraged these quantum dots’ advantageous properties, using them as laser dyes, which are compounds typically dissolved in liquid solvents to produce dyes that amplify the light emitted by lasers.

See also  MIT Pioneers Quantum Light Source for Optical Quantum Computers and Teleportation Devices for Communication

Using this method, Lin, Yang and their colleagues realized the amplified spontaneous emission (ASE) of blue light from the quantum dots. A further advantage of their CQD-based laser is that it exhibits low toxicity compared to previously introduced lasers utilizing Cd and cadmium selenide (CdSe) quantum dots.

“The blue QD laser is operated under quasi-continuous-wave excitation by solid-state nanosecond lasers,” wrote Lin, Yang and their colleagues.

“A Littrow-configuration cavity enables narrow linewidth (<0.2 nm), wavelength-tunable, coherent and stable laser outputs without circulating the solution. These results indicate the promise of ZnSe–ZnS QDs to fill the ‘blue gap’ of QD lasers and to replace less stable blue laser dyes for a multitude of applications.”

Overall, the results of this recent study highlight the potential of quantum dots based on ZnSe and ZnS for developing blue light-emitting laser technologies with low toxicity. In the future, the methods used by Lin, Yang and their colleagues could serve as an inspiration for other teams that are developing laser nanotechnologies, potentially also paving the way for the development of liquid CQDs-based lasers that emit ultraviolet (UV) light.


Source link

blue Colloidal dots Lasers leverage lightemitting lowtoxicity quantum
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Comments are closed.

Top Articles

Laser direct writing on Au nanofilm

News

Semiconductor Manufacturing Automation

News

Scaling Up the Power of Nanotechnology – Scientists Develop New Conceptual Nanomaterial With Huge Potential

Editors Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Extracellular vesicles captured by sustainable wood cellulose-based nanofiber may identify and improve cancer treatment

November 19, 2023

Powering wearable devices with high-performing carbon nanotube yarns

May 30, 2024

Scientists develop novel nanoparticles that could serve as contrast agents

October 25, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel