Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025

Dynamic visualizations expose how domain walls shift in ferroelectrics

May 23, 2025

Special contact lenses let you see infrared light – even in the dark

May 22, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»New Approach to Treating Melanoma
Medical

New Approach to Treating Melanoma

June 20, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
New Approach to Treating Melanoma
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

An international research team, led by Professor Wenbo Bu of Fudan University and Distinguished Professor Dayong Jin of the University of Technology Sydney, discovered an innovative method to effectively treat cancer by reactivating suppressed metabolic pathways in cancer cells, as published in the prestigious journal Nature Nanotechnology.

Image Credit: crystal light/Shutterstock.com​​​​​​​

The researchers employed tyrosine, a common amino acid, as a nanomedicine to alter the metabolism of melanoma, a fatal skin cancer, and prevent the disease from spreading.

Australia has the highest skin cancer rate in the world. This novel technique could be coupled with existing therapies to improve the treatment of melanoma. The approach could potentially be used to treat other forms of cancer.

Tyrosine’s bioavailability is restricted in living beings. However, the researchers employed a novel nanotechnology approach to packaging it into small particles known as nanomicelles. These particles are attracted to cancer cell membranes and rapidly break down, increasing absorption.

The researchers then tested the novel therapy in mice and human-derived melanoma cells in the lab, discovering that the tyrosine nanomicelles awoke dormant metabolic pathways, induced melanin formation, and suppressed tumor development.

Uncontrolled rapid growth is a key feature that distinguishes cancer cells from normal cells. In cancer cells some metabolic pathways are over-activated, and others are suppressed, to create the environment necessary for rapid spread.

Dayong Jin, Distinguished Professor, University of Technology Sydney

He added, “While a few metabolism-based drugs for cancer have been developed previously, such as aromatase inhibitors impeding estrogen synthesis in breast cancer and HK2 inhibitors targeting glycolysis in various cancers, these work by suppressing over-activate metabolic pathways.”

See also  Researchers investigate the efficacy of a novel intra-tumoral drug delivery carrier in treating oral squamous cell carcinoma

Professor Bu noted, “Our research shows for the first time that cancer can be stopped by reactivating metabolic pathways that are dormant. And this can be done using simple nutrients, such as amino acids, sugars, and vitamins, which are safe, readily available and well tolerated.”

Different nutrients will have varying effects on cancer. Melanoma cells arise from melanocytes, which are skin cells that create melanin. Tyrosine is required to create melanin and can enhance melanin production, which explains its effectiveness with melanoma.

The reactivation of melanin synthesis causes the melanoma cell to lower glycolysis, the process of turning sugar into energy, which is believed to be the reason for its anti-cancer effects.

Melanoma cells are also susceptible to heat stress. The researchers discovered that by combining tyrosine nanomicelle therapy with near-infrared laser treatment, they could remove melanoma in mice within six days, and it did not return during the study time.

The findings point to a possible fresh frontier in using nanomedicine for cancer treatment.

Journal reference:

Chen, Y. et al. (2024) Nutrient-delivery and metabolism reactivation therapy for melanoma. Nature Nanotechnology. doi:10.1038/s41565-024-01690-6

Source link

approach melanoma treating
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Smart nanotherapy enhances immune attack on melanoma

April 30, 2025

Cholesterol-modified oligonucleotides show promise for treating brain diseases

April 25, 2025

New approach to reconfigurable colloidal assemblies paves way for adaptive smart materials

March 24, 2025

Nanogel drug delivery system shows promise for treating recurrent urinary tract infections

March 21, 2025

Small Solutions for Big Problems in Drug Discovery and Delivery

November 19, 2024

Multi-omics approach reveals nanoplastic toxicity in aquatic life

November 11, 2024

Comments are closed.

Top Articles
News

New process creates ordered semiconductor material at room temperature

News

Can Carbon Nanotubes Be Used in Batteries?

Research

Unveiling Why Aluminum Nanoparticles Are Game-Changers for Eco-Friendly Catalysis

Editors Picks

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025

Dynamic visualizations expose how domain walls shift in ferroelectrics

May 23, 2025

Special contact lenses let you see infrared light – even in the dark

May 22, 2025

Nanoscale spectroscopy detects vibrational signals from molecules in confined gaps

May 22, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Compressed titanium and sulfur nanoribbons can transmit electricity without energy loss, scientists find

June 19, 2024

Scientists Discover Hidden Neural Network-Like Abilities of Self-Assembling Molecules

February 10, 2024

Novel coupled nanopore platform offers greater precision for detecting molecules

September 22, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel