Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanoscale rust: The future of magnets?
News

Nanoscale rust: The future of magnets?

October 13, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanoscale rust: The future of magnets?
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Graphical abstract. Credit: Nano Letters (2023). DOI: 10.1021/acs.nanolett.3c01512

Every motor we use needs a magnet. University of Manitoba researcher Rachel Nickel is studying how rust could make those magnets cheaper and easier to produce.

Her most recent paper, published in the journal Nano Letters, explores a unique type of iron oxide nanoparticle. This material has special magnetic and electric features that could make it useful. It even has potential as a permanent magnet, which we use in car and airplane motors.

What sets it apart from other magnets is that it’s made from two of the most common elements found on earth: iron and oxygen. Right now, we use magnets made out of some of the rarest elements on the planet.

“The ability to produce magnets without rare earth elements is incredibly exciting,” says Nickel. “Almost everything that we use that has a motor where we need to start a motion relies on a permanent magnet”.

Researchers only started to understand this unique type of rust, called epsilon iron oxide, in the last 20 years.

“Now, what’s special about epsilon iron oxide is it only exists in the nanoscale,” says Nickel. “It’s basically fancy dust. But it is fancy dust with such incredible potential.”






Credit: Canadian Light Source

In order to use it in everyday technology, researchers like Nickel need to understand its structure. To study epsilon iron oxide’s structure in different sizes, Nickel and colleagues collected data at the Advanced Photon Source (APS) in Illinois, thanks to the facility’s partnership with the Canadian Light Source (CLS) at the University of Saskatchewan. As the particle sizes change, the magnetic and electric traits of epsilon iron oxide change; the researchers began to see unusual electronic behavior in their samples at larger sizes.

See also  Nano-Enhanced Sodium Carbonate Breaks Barriers in Carbon Capture

Nickel hopes to continue research on these particles, pursuing some of the stranger magnetic and electric properties.

“The more we are able to investigate these systems and the more we have access to facilities to investigate these systems, the more we can learn about the world around us and develop it into new and transformative technologies,” she says.

Provided by
Canadian Light Source



Source link

Future magnets nanoscale Rust
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

Innovative 3D gold microelectrode arrays enhance understanding of neuronal network communication

News

Extracellular vesicles that guide zebrafish embryonic development may have potential for human medicine

Technology

Injections of drug-filled nanoparticles may relieve arthritis pain

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Nanoelectronics Fabrication: A Focus on Lithography

January 3, 2024

Microplastics are adsorbing zinc oxide from sunscreens and microbeads from cleansers

August 23, 2023

Scientists discover super sensor for the smallest scales

March 28, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel