Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanoscale Optical Breakthrough Unlocks a World of Quantum Possibilities
News

Nanoscale Optical Breakthrough Unlocks a World of Quantum Possibilities

August 15, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanoscale Optical Breakthrough Unlocks a World of Quantum Possibilities
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Light is extremely confined in a nanoslit in a coupled-nanowire-pair. Credit: Zhejiang University Nanophotonics Group led by Limin Tong

Waveguiding scheme enables highly confined subnanometer optical fields.

Researchers have pioneered a novel method for confining light to subnanometer scales. This development offers promising potential for advancements in areas such as light-matter interactions and super-resolution nanoscopy.

Advancements in Light Confinement Technology

Imagine shrinking light down to the size of a tiny water molecule, unlocking a world of quantum possibilities. This has been a long-held dream in the realms of light science and technology. Recent advancements have brought us closer to achieving this incredible feat, as researchers from Zhejiang University have made groundbreaking progress in confining light to subnanometer scales.

Traditional Methods and New Discoveries

Conventionally, light localization beyond its usual diffraction limit has relied on two methods: dielectric confinement and plasmonic confinement. However, challenges such as precision fabrication and optical loss have obstructed the confinement of optical fields to sub-10 nanometer (nm) or even 1-nm levels. Now, a novel waveguiding scheme detailed on July 7 in the journal Advanced Photonics is set to harness the potential of subnanometer optical fields.

Confined Optical Field Generation Waveguiding Scheme

Waveguiding scheme to generate a sub-nm-confined optical field in a nano-slit mode. (a) Schematic illustration of the CNP waveguiding scheme. (b) 3-D plot of the cross-sectional field intensity distribution of the nano-slit mode. Credit: Yang, Zhou, et al., doi 10.1117/1.AP.5.4.046003

Consider this scenario: light, originating from a standard optical fiber, undertakes a transformative journey. It passes through a fiber taper and reaches its final destination in a coupled-nanowire-pair (CNP). Here, the light transforms into a unique nano-slit mode, creating a confined optical field that can be as minute as a fraction of a nanometer (approximately 0.3 nm). Astonishingly, this innovative approach boasts an efficiency of up to 95 percent and a high peak-to-background ratio, thus opening up an array of opportunities.

Extending the Boundaries of Nano-Exploration

The ground-breaking waveguiding scheme broadens its scope to the mid-infrared spectral range, further extending the limits of the nano-universe. Optical confinement can now reach an extraordinary scale of approximately 0.2 nm (λ/20000), which opens more avenues for exploration and discovery.

Professor Limin Tong of the Zhejiang University Nanophotonics Group notes, “Unlike previous methods, the waveguiding scheme presents itself as a linear optical system, bringing a host of advantages. It enables broadband and ultrafast pulsed operation and allows for the combination of multiple sub-nanometer optical fields. The ability to engineer spatial, spectral, and temporal sequences within a single output opens up endless possibilities.”

Potential Applications and Future Prospects

The potential applications of these breakthroughs are indeed breathtaking. The possibility of an optical field so localized that it can interact with individual molecules or atoms opens up potential for progress in areas like light–matter interactions, super-resolution nanoscopy, atom/molecule manipulation, and ultrasensitive detection. We are on the verge of a new era of discovery, where the tiniest realms of existence are now within our reach.

Reference: “Generating a sub-nanometer-confined optical field in a nanoslit waveguiding mode” by Liu Yang, Zhanke Zhou, Hao Wu, Hongliang Dang, Yuxin Yang, Jiaxin Gao, Xin Guo, Pan Wang and Limin Tong, 7 July 2023, Advanced Photonics.
DOI: 10.1117/1.AP.5.4.046003


Source link

See also  High-quality nanodiamonds offer new bioimaging and quantum sensing potential
Breakthrough nanoscale optical Possibilities quantum Unlocks World
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

The Exciting Role hBN Could Play

News

Stabilized ferrocene molecules result in the world’s smallest electrically controlled molecular machine

News

Ultrathin conductor surpasses copper for more energy-efficient nanoelectronics

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

BEND lipids improve LNP mRNA delivery and gene editing

February 5, 2025

Researchers capture strange behavior of laser-excited gold

February 25, 2024

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel