Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanopore Technology Enables Single-Molecule Analysis of Protein Structures
News

Nanopore Technology Enables Single-Molecule Analysis of Protein Structures

August 10, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanopore Technology Enables Single-Molecule Analysis of Protein Structures
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

A team of scientists, headed by the University of Oxford, has made a significant breakthrough in detecting modifications on protein structures. Their method, published in Nature Nanotechnology, uses cutting-edge nanopore technology to identify structural variations at the level of individual molecules, even within long protein chains. This advancement holds promise for better understanding protein functions and related biological processes.

Human cells are believed to contain around 20,000 genes responsible for encoding proteins. However, the actual number of proteins observed in cells is much higher, with over 1,000,000 different structures known. This discrepancy is due to post-translational modification (PTM), which happens after a protein is transcribed from DNA. PTM introduces structural changes, like adding chemical groups or carbohydrate chains to the individual amino acids that compose proteins. Consequently, a single protein chain can have hundreds of potential variations, leading to the vast diversity of proteins in cells. PTM plays a crucial role in expanding the functional capabilities of proteins and contributes to the complexity of biological processes within the human body.

These protein variants play crucial roles in biology as they enable precise regulation of complex biological processes within individual cells. Mapping and understanding this variation would provide valuable insights that could revolutionize our comprehension of cellular functions. However, producing comprehensive protein inventories has been a challenging and elusive goal until now. The recent breakthrough in detecting modifications on protein structures using innovative nanopore technology, as achieved by the team of scientists led by the University of Oxford, holds promise for advancing our understanding of these vital cellular mechanisms.

See also  Neutralizing electronic inhomogeneity in cleaved bulk MoS₂

To address this challenge, researchers from the University of Oxford’s Department of Chemistry have developed a method for protein analysis using nanopore DNA/RNA sequencing technology. In this technique, a controlled flow of water is used to capture and unfold 3D proteins, converting them into linear chains. These chains are then threaded through narrow pores, allowing only individual amino acid molecules to pass through. Structural variations in the proteins are identified by measuring changes in electrical current applied across the nanopore. Each molecule causes distinct disruptions in the current, providing a unique signature that allows for the identification of different protein variants. This innovative approach holds great promise for achieving comprehensive protein inventories and advancing our understanding of cellular functions.

The team’s method proved highly effective in detecting three distinct post-translational modifications (PTMs) – phosphorylation, glutathionylation, and glycosylation – at the level of individual molecules, even for protein chains that were over 1,200 amino acids long. The method successfully identified modifications that were deep within the protein’s sequence. Significantly, this approach does not necessitate the use of labels, enzymes, or additional reagents, making it a label-free and straightforward process. This achievement marks a significant step forward in protein analysis and provides a powerful tool for exploring the complexities of cellular functions without the need for complex chemical processes.

The research team suggests that the newly developed protein characterization method can be easily incorporated into existing portable nanopore sequencing devices. By doing so, researchers will be able to quickly construct protein inventories of individual cells and tissues. This advancement holds the potential to enable point-of-care diagnostics, allowing personalized detection of specific protein variants linked to various diseases, such as cancer and neurodegenerative disorders. This development could revolutionize the field of medical diagnostics and bring us closer to more targeted and effective treatments based on individual protein profiles.

See also  Silver nanoparticles and a new sensing method can fight back against antibiotic-resistant biofilms

Professor Yujia Qing, a contributing author from the Department of Chemistry at the University of Oxford, expressed that the newly developed method is both straightforward and potent, offering a wide range of possibilities. Initially, it enables the examination of individual proteins, especially those implicated in specific diseases. Looking ahead, the method has the potential to generate comprehensive inventories of protein variants within cells, leading to deeper insights into cellular processes and disease mechanisms. This breakthrough has the potential to revolutionize our understanding of biology and contribute to advancements in medical research and personalized medicine.

Professor Hagan Bayley, a contributing author from the Department of Chemistry at the University of Oxford and co-founder of Oxford Nanopore Technologies, emphasized the significant potential of the method. Being able to precisely locate and identify post-translational modifications and other protein variations at the level of individual molecules holds great promise for advancing our comprehension of cellular functions and molecular interactions. Furthermore, this breakthrough may pave the way for new opportunities in personalized medicine, diagnostics, and therapeutic interventions. The method’s implications are far-reaching and have the potential to shape the future of medical research and healthcare.

Oxford Nanopore Technologies, which originated from Professor Bayley’s research and was established as a spinout company in 2005, has emerged as a leader in next-generation sequencing technologies. The company’s patented nanopore technology allows scientists to rapidly sequence nucleic acids (DNA and RNA) using portable and cost-effective devices, unlike traditional sequencing methods that often demand specialized laboratories. Oxford Nanopore devices have brought about a revolution in both fundamental and clinical genomics, with a significant impact during the COVID-19 pandemic. They played a crucial role in tracking the spread of new coronavirus variants, contributing to the understanding and management of the pandemic.

See also  Semiconductor Failure Analysis Techniques

This work was carried out in collaboration with the research group of mechanobiologist Sergi Garcia-Maynes at King’s College London and the Francis Crick Institute.

Source: https://www.ox.ac.uk/

Source link

Analysis Enables Nanopore Protein SingleMolecule Structures technology
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Permselectivity reveals a cool side of nanopores

News

Researchers triple carbon nanotube yield for LEDs, solar cells, flexible and transparent electronics

News

Scientists achieve femtosecond laser fabrication of magnetic-responsive Janus origami robots

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Molybdenene – Properties and Applications

December 20, 2023

Quantum interference could lead to smaller, faster, and more energy-efficient transistors

March 31, 2024

Scientists create black arsenic visible infrared photodetectors

May 17, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel