Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanopillars create tiny openings in the nucleus without damaging cells
News

Nanopillars create tiny openings in the nucleus without damaging cells

October 12, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanopillars create tiny openings in the nucleus without damaging cells
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Engineered nanotopographies for breaching the nuclear membrane. Credit: Advanced Functional Materials (2024). DOI: 10.1002/adfm.202410035

Imagine trying to poke a hole in the yolk of a raw egg without breaking the egg white. It sounds impossible, but researchers at the University of California San Diego have developed a technology that performs a similarly delicate task in living cells.

They created an array of nanopillars that can breach the nucleus of a cell—the compartment that houses our DNA—without damaging the cell’s outer membrane.

The research, published in Advanced Functional Materials, could open new possibilities in gene therapy, where genetic material needs to be delivered directly into the nucleus, as well as drug delivery and other forms of precision medicine.

“We’ve developed a tool that can easily create a gateway into the nucleus,” said Zeinab Jahed, professor in the Aiiso Yufeng Li Family Department of Chemical and Nano Engineering at UC San Diego and senior author of the study.

The nucleus is impenetrable by design. Its membrane is a highly fortified barrier that shields our genetic code, letting in only specific molecules through tightly controlled channels. “It’s not easy to get anything into the nucleus,” said Jahed. “Drug and gene delivery through the nuclear membrane has long been an immense challenge.”

Current methods to access the nucleus typically involve using a tiny needle to physically puncture both the nucleus and the cell. However, these methods are invasive and can only be used in small-scale applications.

Jahed and her team, co-led by UC San Diego nanoengineering Ph.D. student Ali Sarikhani, developed a non-disruptive solution. They engineered an array of nanopillars, consisting of nanoscale cylindrical structures.

When a cell is placed on top of these nanopillars, the nucleus wraps itself around the nanopillars, causing its membrane to curve. This induced curvature in turn causes tiny, self-sealing openings to temporarily form in the nuclear membrane. The outer membrane of the cell, meanwhile, remains undamaged.

See also  Nanotechnology in the fight against viruses

“This is exciting because we can selectively create these tiny breaches in the nuclear membrane to access the nucleus directly, while leaving the rest of the cell intact,” said Jahed.

In experiments, cells containing a fluorescent dye within their nuclei were placed on the nanopillars. Researchers observed that the dye leaked from the nucleus into the cytoplasm but remained confined within the cell. This indicated that only the nuclear membrane, not the cell membrane, had been punctured.

The researchers observed this effect in various cell types, including epithelial cells, heart muscle cells and fibroblasts.

The team is currently investigating the mechanisms behind this effect. “Understanding these details will be key to optimizing the platform for clinical use and ensuring that it is both safe and effective for delivering genetic material into the nucleus,” said Jahed.

Provided by
University of California – San Diego



Source link

cells create damaging Nanopillars nucleus openings Tiny
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Comments are closed.

Top Articles

Nanoparticles restore neurons in Parkinson’s with wireless brain stimulation

News

Alzheimer’s drug may someday help save lives by inducing a state of ‘suspended animation’

News

Discovery of high order skyrmions and antiskyrmions

Editors Picks

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Study finds iron-rich enamel protects, but doesn’t color, rodents’ orange-brown incisors

April 22, 2024

Using gas bubbles to precisely deliver nanomedicines shows promise for lung cancer treatment

November 28, 2024

Diagnostic test that combines two technologies with machine learning could lead to new paradigm for at-home testing

September 20, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel