Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanoparticles ‘hitchhike’ on immune cells to catch cancer metastasis early
News

Nanoparticles ‘hitchhike’ on immune cells to catch cancer metastasis early

February 20, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanoparticles ‘hitchhike’ on immune cells to catch cancer metastasis early
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The Chung Lab has developed a nanoparticle that can hitchhike on immune cells and travel to the lymph nodes. Credit: Chung Lab

Lymph nodes are the canaries in the coal mine of our immune system—firing into gear at the first indication of illness, then sending immune cells where they’re needed in the body to fight infection and disease.

For the nearly 20 million patients around the world diagnosed with cancer each year, the lymph nodes are an invaluable early indicator of whether their cancer has metastasized—when cancer cells begin to spread to another organ. Catching metastasis as early as possible means that the patient can be administered the necessary chemotherapy and immune therapies that will vastly improve their prognosis.

Researchers at USC’s Alfred E. Mann Department of Biomedical Engineering have developed a new nanoparticle that can “hitch a ride” on immune cells, or monocytes. Because of its tiny size, the particle can tag along directly into lymph nodes and help metastasis show up on MRIs where it would otherwise be too hard to detect. The results could lead to more advanced contrast agents that can be injected into patients to improve MRI cancer screenings of the lymph nodes.

The work has been published in ACS Nano and was led by Dr. Karl Jacob Jr. and Karl Jacob III Early-Career Chair Eun Ji Chung, and Noah Trac, a Ph.D. student in the Chung Lab.

While lymph nodes are an essential factor in cancer detection, screening them via biopsy is painful and invasive, and can lead to unwanted side effects like infection, lymphedema and thrombosis. Imaging tools such as MRI detection are non-invasive. Still, they also have significant shortcomings when it comes to screening lymph nodes,

See also  Nanowires in Cancer: Diagnostics and Therapeutic Innovations

“MRIs will look at the lymph node’s size, but that does not have a great connection and correlation to the fact that it is metastatic,” Chung said. “Even if you have a cold, your lymph nodes will start inflaming.”

“The major issue with current MRI techniques is not that they don’t detect the immune cells,” Trac said. “A major issue with current contrast agents is that there is no cancer-targeting mechanism, so most lymph nodes are lit up equally, regardless of whether or not there is cancer.”

To address this challenge, Chung, Trac and their co-authors developed a nanoparticle that targets a receptor present on both tumor cells and immune cell monocytes—cells that travel to the lymph nodes and are increasingly prevalent under disease conditions.

“The idea behind this nanoparticle is to try and direct the delivery of the gadolinium contrast agent to lymph nodes that have cancer, so that they show up brighter on the MRI than healthy lymph nodes,” Trac said.

The diagnostic tool would also offer strong clinical value for doctors to not only catch first-time metastasis during an initial cancer diagnosis, but it will also allow clinicians to keep track of cancer recurrence.

“Just say a primary tumor has been removed, but perhaps they didn’t get all of it, or the cancer comes back and it’s metastatic for the second time. Recurrent metastasis is much harder to detect and can lead to worse outcomes for the patient,” Chung said.

Hitching a ride to light up cancer

The nanoparticles work by targeting a protein expressed by cancer cells, known as C–C chemokine receptor 2 (CCR2). The particles “hitchhike” onto the immune cell monocytes that the body produces that also express this same receptor in response to the cancer. The monocytes then give the particles a free ride into the lymph nodes, where the particles can effectively highlight the metastatic cancer cells and enable clearer detection via MRI.

See also  Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

“The reason why this mechanism works, in addition to the targeting elements, is because our particle size is also very unique, and it can reach the lymph nodes,” Chung said. “We found there’s a size cut-off and our particle type is able to pass into the lymph nodes and target cancer cells that have gotten there, along with the monocytes that express this receptor.”

The process offers game-changing benefits for the early detection of cancer metastasis in the lymph nodes. While previously, metastasis could only be assessed by an increase in lymph node size; the new Chung Lab particles could lead to MRI contrast agents that can highlight metastatic cells in lymph nodes that may otherwise appear normal. In experiments using a mouse model, the team demonstrated that the particles increased the signal detected by MRI by up to 50%.

“The particles are amplifying the signal, and we can see that at points where the lymph nodes haven’t yet changed in size, and the metastasis is very early. We’re providing this benefit where, clinically, you wouldn’t be able to see metastasis at all,” Chung said.

The next step for the research team is to get their work closer to clinical applications for MRI contrast agents. The work has been submitted to the Nanoparticle Characterization Laboratory at the National Institutes of Health, where a third party will assess and validate the work to enable it to move closer to human trials.

Provided by
University of Southern California



Source link

See also  Scientists develop nanomaterials using a bottom-up approach
cancer catch cells early hitchhike immune metastasis nanoparticles
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Rapid thermal shock method achieves uniform dispersion of metal nanoparticles on carbon supports

News

How butterflies can help scientists detect cancer

News

Costly gas separation may not be needed to recycle CO₂ from air and industrial plants

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The Key to Achieving Controlled Nanotube Fabrication

January 17, 2024

Researchers develop thermal radiation controllable epsilon-near-zero material that can withstand extreme environments

February 14, 2024

Novel DNA nanopores can open and close on demand for controlled drug delivery

October 10, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel