Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Nanomaterials»Nanoparticles demonstrate new and unexpected mechanism of coronavirus disinfection
Nanomaterials

Nanoparticles demonstrate new and unexpected mechanism of coronavirus disinfection

February 11, 2025No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanoparticles demonstrate new and unexpected mechanism of coronavirus disinfection
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

The COVID-19 pandemic provided a driving force for researchers to seek out new disinfection methods that could tackle future viral outbreaks. One promising approach relies on the use of nanoparticles, with several metal and metal oxide nanoparticles showing anti-viral activity against SARS-CoV-2, the virus that causes COVID-19. With this in mind, researchers from Sweden and Estonia investigated the effect of such nanoparticles on two different virus types.

Aiming to elucidate the nanoparticles’ mode of action, they discovered a previously unknown antiviral mechanism, reporting their findings in Nanoscale.

The researchers – from the Swedish University of Agricultural Sciences (SLU) and the University of Tartu – examined triethanolamine terminated titania (TATT) nanoparticles, spherical 3.5-nm diameter titanium dioxide (titania) particles that are expected to interact strongly with viral surface proteins.

They tested the antiviral activity of the TATT nanoparticles against two types of virus: swine transmissible gastroenteritis virus (TGEV) – an enveloped coronavirus that’s surrounded by a phospholipid membrane and transmembrane proteins; and the non-enveloped encephalomyocarditis virus (EMCV), which does not have a phospholipid membrane. SARS-CoV-2 has a similar structure to TGEV: an enveloped virus with an outer lipid membrane and three proteins forming the surface.

“We collaborated with the University of Tartu in studies of antiviral materials,” explains lead author Vadim Kessler from SLU. “They had found strong activity from cerium dioxide nanoparticles, which acted as oxidants for membrane destruction. In our own studies, we saw that TATT formed appreciably stable complexes with viral proteins, so we could expect potentially much higher activity at lower concentration.”

See also  Nanocrystal shape affects molecular binding

In this latest investigation, the team aimed to determine whether one of these potential mechanisms – blocking of surface proteins, or membrane disruption via oxidation by nanoparticle-generated reactive oxygen species – is the likely cause of TATT’s antiviral activity. The first of these effects usually occurs at low (nanomolar to micromolar) nanoparticle concentrations, the latter at higher (millimolar) concentrations.

Mode of action

To assess the nanoparticle’s antiviral activity, the researchers exposed viral suspensions to colloidal TATT solutions for 1 h, at room temperature and in the dark (without UV illumination). For comparison, they repeated the process with silicotungstate polyoxometalate (POM) nanoparticles, which are not able to bind strongly to cell membranes.

The nanoparticle-exposed viruses were then used to infect cells and the resulting cell viability served as a measure of the virus infectivity. The team note that the nanoparticles alone showed no cytotoxicity against the host cells.

Measuring viral infectivity after nanoparticle exposure revealed that POM nanoparticles did not exhibit antiviral effects on either virus, even at relatively high concentrations of 1.25 mM. TATT nanoparticles, on the other hand, showed significant antiviral activity against the enveloped TGEV virus at concentrations starting from 0.125 mM, but did not affect the non-enveloped EMCV virus.

Based on previous evidence that TATT nanoparticles interact strongly with proteins in darkness, the researchers expected to see antiviral activity at a nanomolar level. But the finding that TATT activity only occurred at millimolar concentrations, and only affected the enveloped virus, suggests that the antiviral effect is not due to blocking of surface proteins. And as titania is not oxidative in darkness, the team propose that the antiviral effect is actually due to direct complexation of nanoparticles with membrane phospholipids – a mode of antiviral action not previously considered.

See also  Nanoparticles enhance locusts’ sense of smell

“Typical nanoparticle concentrations required for effects on membrane proteins correspond to the protein content on the virus surface. With a 1:1 complex, we would need maximum nanomolar concentrations,” Kessler explains. “We saw an effect at about 1 mM/l, which is far higher. This was the indication for us that the effect was on the whole of membrane.”

Verifying the membrane effect

To corroborate their hypothesis, the researchers examined the leakage of dye-labelled RNA from the TGEV coronavirus after 1 h exposure to nanoparticles. The fluorescence signal from the dye showed that TATT-treated TGEV released significantly more RNA than non-exposed virus, attributed to the nanoparticles disrupting the virus’s phospholipid membrane.

Finally, the team studied the interactions between TATT nanoparticles and two model phospholipid compounds. Both molecules formed strong complexes with TATT nanoparticles, while their interaction with POM nanoparticles was weak. This additional verification led the researchers to conclude that the antiviral effect of TATT in dark conditions is due to direct membrane disruption via complexation of titania nanoparticles with phospholipids.

“To the best of our knowledge, [this] proves a new pathway for metal oxide nanoparticles antiviral action,” they write.

Importantly, the nanoparticles are non-toxic, and work at room temperature without requiring UV illumination – enabling simple and low-cost disinfection methods. “While it was known that disinfection with titania could work in UV light, we showed that no special technical measures are necessary,” says Kessler.

Kessler suggests that the nanoparticles could be used to coat surfaces to destroy enveloped viruses, or in cost-effective filters to decontaminate air or water. “[It should be] possible to easily create antiviral surfaces that don’t require any UV activation just by spraying them with a solution of TATT, or possibly other oxide nanoparticles with an affinity to phosphate, including iron and aluminium oxides in particular,” he tells Physics World.

See also  Rapid thermal shock method achieves uniform dispersion of metal nanoparticles on carbon supports

Source link

coronavirus Demonstrate disinfection mechanism nanoparticles unexpected
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ultrasound-activated nanoparticles wipe out biofilm infections in lab tests

May 1, 2025

How gold nanoparticles may one day help to restore people’s vision

April 26, 2025

Engineers develop a way to mass manufacture nanoparticles that deliver cancer drugs directly to tumors

April 15, 2025

Bacteria-enhanced graphene oxide nanoparticles provide triple-action tumor eradication

April 14, 2025

Chemical oscillations in palladium nanoparticles could pave way for recycling precious metal catalysts

April 1, 2025

DNA-loaded lipid nanoparticles are poised to bring gene therapy to common chronic diseases

April 1, 2025

Comments are closed.

Top Articles
News

Advanced Optical Emission Spectroscopy in Plasma Systems

News

Nanotechnology in Cancer Diagnosis

News

Nano-nutrients can blunt effects of soil contamination, boost crop yields

Editors Picks

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Harvesting more solar energy with two-dimensional supercrystals

December 13, 2023

Unveiling the Strength of Amorphous Silicon Carbide for Industry Scalability

November 8, 2023

Growing special micro-crystals for better devices

September 3, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel