Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanoparticle researchers develop microfluidic platform for better delivery of gene therapy for lung disease
News

Nanoparticle researchers develop microfluidic platform for better delivery of gene therapy for lung disease

May 13, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanoparticle researchers develop microfluidic platform for better delivery of gene therapy for lung disease
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: ACS Nano (2024). DOI: 10.1021/acsnano.4c00768

Drug delivery researchers at Oregon State University have developed a device with the potential to improve gene therapy for patients with inherited lung diseases such as cystic fibrosis.

In cell culture and mouse models, scientists in the OSU College of Pharmacy demonstrated a novel technique for the aerosolization of inhalable nanoparticles that can be used to carry messenger RNA, the technology underpinning COVID-19 vaccines, to patients’ lungs.

The findings are important because the current nebulization method for nanoparticles subjects them to shear stress, hindering their ability to encapsulate the genetic material and causing them to aggregate in certain areas of the lungs rather than spread out evenly, the researchers said.

The study led by Gaurav Sahay, a professor of pharmaceutical sciences, was published in ACS Nano.

Sahay’s lab studies lipid nanoparticles, or LNPs, as a gene delivery vehicle with a focus on cystic fibrosis, a progressive genetic disorder that results in persistent lung infection and affects 30,000 people in the U.S., with about 1,000 new cases identified every year.

One faulty gene—the cystic fibrosis transmembrane conductance regulator, or CFTR—causes the disease, which is characterized by lung dehydration and mucus buildup that blocks the airway.

Lipids are organic compounds containing fatty tails and are found in many natural oils and waxes, and nanoparticles are tiny pieces of material ranging in size from one- to 100-billionths of a meter. Messenger RNA delivers instructions to cells for making a particular protein.

With the coronavirus vaccines, the mRNA carried by the lipid nanoparticles instructs cells to make a harmless piece of the virus’ spike protein, which triggers an immune response from the body. As a therapy for cystic fibrosis, the genetic material would fix the flaw in patients’ CFTR gene.

See also  Scientists develop novel nanoparticles that could serve as contrast agents

“We utilized a novel microfluidic chip that helps in generation of plumes that carry nanoparticles and does not cause any shear stress,” Sahay said. “This device is based on the similar idea of an ink-jet cartridge that generates plumes to print words on paper.”

Four years ago, Sahay said, an Oregon-based startup called Rare Air Health Inc. contacted him about the prospect of using microfluidic technology for the aerosolization and delivery of lipid nanoparticles.

Microfluidics is the study of how fluids behave as they travel through or are confined in microminiaturized devices equipped with channels and chambers. Surface forces as opposed to volumetric forces dominate fluids at the microscale, meaning fluids act much differently there than what is observed in everyday life.

“When Rare Air came to me, I thought the device might work great for our purposes, and what followed were extensive studies that demonstrated the superiority of this device in generating aerosolized nanoparticles as compared to clinically used vibrating mesh nebulizers,” Sahay said.

“The device does not let the nanoparticles aggregate and can deliver mRNA with higher precision than existing tech. The additional cool thing is that this device can be digitally controlled, and Rare Air is developing prototypes for human use.”

In addition to Sahay, the other Oregon State researchers on the study were Yulia Eygeris, Jeonghwan Kim, Antony Jozić and Elissa Bloom. Scientists from Funai Microfluidic Systems of Lexington, Kentucky, were also part of the collaboration.

“Funai focuses on inkjet tech and building these chips at scale; they worked closely to enable the device to be suitable for aerosolization,” said Sahay, who in addition to his role at OSU serves as an advisor and consultant to Rare Air. “This study demonstrates a marriage between new devices and formulation science that might hugely impact human health.”

See also  Researchers create orientation-independent magnetic field-sensing nanotube spin qubits

Provided by
Oregon State University



Source link

delivery develop Disease Gene lung microfluidic Nanoparticle platform Researchers Therapy
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Comments are closed.

Top Articles
Medical

Soft X-ray microscope captures living mammalian cells

News

AI-powered electronic nose detects diverse scents for health care and environmental applications

News

Advanced microscopy method reveals hidden world of nanoscale optical metamaterials

Editors Picks

Rapid nanoparticle simulations could boost efforts to combat air pollution

June 1, 2025

New tool reveals how DNA nanostructures interact with cell membranes

June 1, 2025

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists use SERS technology to accurately monitor single-molecule diffusion behavior

October 20, 2023

What are the Applications of 3D Printed Graphene?

July 1, 2024

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel