Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nanoelectromechanical resonators based on hafnia–zirconia–alumina superlattices with gigahertz spectrum coverage
News

Nanoelectromechanical resonators based on hafnia–zirconia–alumina superlattices with gigahertz spectrum coverage

August 9, 2023No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nanoelectromechanical resonators based on hafnia–zirconia–alumina superlattices with gigahertz spectrum coverage
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Nanoelectromechanical resonators based on hafnia-zirconia-alumina superlattices with gigahertz spectrum coverage
Scanning electron microscope of (left) hafnia-zirconia-alumina nanoelectromechanical resonator operating at 17.4 GHz and (right) resonator cross-section highlighting superlattice details. Credit: Tharpe et al.

Newly developed atomic engineering techniques have opened exciting opportunities for enabling ferroelectric behavior in high-k dielectrics, materials that have a high dielectric constant (i.e., kappa or k) compared to silicon. This could in turn inform the development of more advanced CMOS-based technology with a broader range of functions or properties.

Researchers at the University of Florida have recently been exploring the potential of atomically engineered hafnia and zirconia-based materials for creating different components for electronic systems. In a recent Nature Electronics paper, they introduced new wide spectrum nanoelectromechanical resonators, electronic components that can generate a resonant frequency, based on hafnia–zirconia–alumina superlattices.

“My research group has been the pioneer in exploring atomically engineered ferroelectric hafnia–zirconia as a nanoscale integrated transducer for new CMOS-based Nanoelectromechanical systems (CMOS-NEMS) paradigms, with transforming impact in clock generation, physical sensing, spectral processing, and computing applications,” Roozbeh Tabrizian, the principal investigator who led the study, told Phys.org. “For all these applications, the effectiveness of NEMS operation is essentially set by the efficiency of piezoelectric coupling in hafnia–zirconia film.”

Hafnia–zirconia films have a complex polycrystalline structure that consists of domains with different polar and nonpolar morphologies, each of which contributes to electromechanical coupling depending on electric and mechanical boundary conditions. Due to this intricate structure, the fundamental physical processes underpinning piezoelectricity in these materials remain poorly understood, which makes enhancing this property challenging.

“When specifically targeting the use of hafnia–zirconia films to create ultra- and super-high-frequency resonators, the piezoelectric coupling of the film at such high frequencies is a key measure that set the performance and identify their applicability for creation of clocks and filters,” Tabrizian said. “To answer these questions, we decided to develop experiments to unlock the evolution of piezoelectric coupling in hafnia–zirconia during electrical polling.”

See also  Team develops a dual metalens that can switch between shooting modes based on light conditions

As part of their recent work, Tabrizian and his colleagues tried to use material engineering approaches to enhance piezoelectric coupling (i.e., an effect that entails an interaction between mechanical and electrical physics) in hafnia–zirconia–alumina superlattices. Finally, they used the material they engineered to create nanoelectromechanical resonators that could be integrated in various CMOS-based electronic devices.

“Our hafnia–zirconia–alumina nanoelectromechanical resonators have three unique features,” Tabrizian said. “The first is their inherent CMOS compatibility and the availability of constituent materials at the front-end of CMOS process highlights a transforming potential for monolithic integration of them with solid-state circuits. This enables creation of clocks, filters, sensors, and mechanical computers that are orders of magnitude higher in performance and power efficiency and lower in size and cost.”

A second advantage of the resonators created by Tabrizian and his colleagues is that they can be easily scaled to super and extremely high frequencies, as the hafnia–zirconia films they are based on can be shrunk significantly. Notably, when scaled down to a few nanometers, the films engineered by the researchers retained their large piezoelectric coupling.

As a result, these films could be used to create many different CMOS-integrated devices, including resonators, clocks and filters that operate at tens of gigahertz. These high-frequency CMOS-integrated systems will be crucial to develop next generation wireless communication technologies.

“Third and last, benefiting from ferroelectric behavior, the piezoelectric coupling in hafnia–zirconia can be switched on and off by temporary application of a DC voltage,” Tabrizian explained. “This enables the creation of frequency control devices that are intrinsically switchable, which obviates the need for external switches and their power consumption, loss, and footprint overhead. This is crucial when targeting extension of system to multi-frequency multi-band operation that requires agile configuration within an array of resonators with different frequencies.”

See also  High-performance SERS substrate proposed based on 2H-TaS2 and single-atom-layer gold clusters

The recent work by this team of researchers enhances the present understanding of how piezoelectric coupling evolves in hafnia–zirconia transducers, switching from the nonlinear quadratic regime in as-deposited films to the linear regime required to create frequency control systems. This switching spontaneously occurs when the engineered hafnia–zirconia films are exposed to sufficient electric-field cycling.

“Our study also highlights the potential of using thin alumina interlayers within hafnia–zirconia transducer (i.e., creating the hafnia–zirconia–alumina superlattice) to enhance piezoelectric coupling of the transducer, and sustain this coupling even once the films are released from substrate to form levitating membranes,” Tabrizian said. “With this knowledge, we shed light on the manufacturing approach for creation of high-performance hafnia–zirconia–alumina resonators that operate with high quality factor and coupling in ultra- and super-high frequencies.”

So far, Tabrizian and his colleagues have successfully used their films to develop high-performance resonators with a coverage spanning between 0.2–20 GHz frequencies. In their next studies, however, they plan to explore the potential of the films to create other electronic components, while also integrating and testing the resonators they created in various microsystems.

“A key direction for our future research will be the integration of the developed hafnia–zirconia–alumina nanoelectromechanical resonators on CMOS chips to create the first super-high-frequency monolithic CMOS-NEMS oscillator,” Tabrizian added. “In addition, we will target exploration of methods for temperature-stabilization of hafnia–zirconia–alumina resonators through material engineering. This is essential for realization of stable oscillators for clock and frequency reference-generation applications.”

More information:
Troy Tharpe et al, Nanoelectromechanical resonators for gigahertz frequency control based on hafnia–zirconia–alumina superlattices, Nature Electronics (2023). DOI: 10.1038/s41928-023-00999-9

See also  Researchers develop high-quality nanomechanical resonators with built-in piezoelectricity

Mayur Ghatge et al, An ultrathin integrated nanoelectromechanical transducer based on hafnium zirconium oxide, Nature Electronics (2019). DOI: 10.1038/s41928-019-0305-3

© 2023 Science X Network

Citation:
Nanoelectromechanical resonators based on hafnia–zirconia–alumina superlattices with gigahertz spectrum coverage (2023, August 2)
retrieved 9 August 2023
from https://phys.org/news/2023-08-nanoelectromechanical-resonators-based-hafniazirconiaalumina-superlattices.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.


Source link

based coverage gigahertz hafniazirconiaalumina Nanoelectromechanical resonators spectrum superlattices
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Nanocarriers study shows antibodies against polyethylene glycol in 83% of the German population

News

Fluorous lipopeptides act as highly effective antibiotics for multidrug-resistant pathogens

Research

Navigating the Future of Neuromorphic Computing

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Physicists track the mass and temperature of a levitated nanoparticle

August 13, 2023

Powering a Hydrogen Future with Graphene Technologies

September 13, 2023

New nano-thin superbug-slaying material could revolutionize wound healing

September 14, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel