Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nano-sized cell particles are promising intervention tool in treating infectious diseases, says study
News

Nano-sized cell particles are promising intervention tool in treating infectious diseases, says study

December 6, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nano-sized cell particles are promising intervention tool in treating infectious diseases, says study
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Mechanism of extracellular vesicle (EV)-mediated SARS-CoV-2 inhibition. Credit:ACS Nano (2023). DOI: 10.1021/acsnano.3c06803

The COVID-19 pandemic demonstrated the importance of being prepared with drug interventions to contain viral outbreaks that can otherwise have devastating consequences. In preparing for the next pandemic—or Disease X, there is an urgent need for versatile platform technologies that could be repurposed upon short notice to combat infectious outbreaks.

A team of researchers, led by Assistant Professor Minh Le from the Institute for Digital Medicine (WisDM) and Department of Pharmacology at the Yong Loo Lin School of Medicine, National University of Singapore (NUS Medicine), discovered that nano-sized particles released by cells, termed “extracellular vesicles” (EVs), can curb the viral infectivity of SARS-CoV-2—its wild type and variant strains—and potentially other infectious diseases.

Asst Prof Le said, “Our study showed that these cell-derived nanoparticles are effective carriers of drugs that target viral genes precisely. These EVs are, therefore, an efficient tool for therapeutic intervention in patients who are infected with COVID-19 or other infectious diseases.”

The study, conducted in collaboration with NUS Medicine’s Biosafety Level 3 (BSL3) Core Facility, the Cancer Science Institute of Singapore at National University of Singapore, and the School of Physical and Mathematical Sciences at Nanyang Technological University (NTU), demonstrated potent inhibition of COVID-19 infection in laboratory models using a combination of EV-based inhibition and anti-sense RNA therapy mediated by antisense oligonucleotides (ASOs).

Nano-sized cell particles are promising intervention tool in treating infectious diseases
Inhibition of SARS-CoV-2 virus infection by red blood cell extracellular vesicles (RBCEVs). Credit: Trinh Tran

A versatile tool that can be applied to any gene of interest, ASOs can recognize and bind to complementary regions of target RNA molecules and induce their inhibition and degradation.

In the study, published in ACS Nano, the authors utilized human red blood cell-derived EVs to deliver ASOs to key sites infected with SARS-CoV-2, resulting in efficient suppression of SARS-CoV-2 infection and replication.

See also  Diagnostic test that combines two technologies with machine learning could lead to new paradigm for at-home testing

The researchers also discovered that EVs exhibited distinct antiviral properties, capable of inhibiting phosphatidylserine (PS) receptor-mediated pathways of viral infection—a key pathway utilized by many viruses to facilitate viral infection. These viral inhibitory mechanisms were applicable to multiple variants of SARS-CoV-2, including the delta and omicron strains, ensuring their broad effectiveness against SARS-CoV-2 infection.

The results from the study point to anti-sense RNA therapy with ASOs as a potentially effective approach that could serve to combat future viral outbreaks. The platform that was developed to deliver ASOs through EVs to target the SARS-CoV-2 viral genes can be readily applied to treat other viral infections by replacing the ASO sequences with those complementary to the target viral genes.

Asst Prof Le and her graduate students Migara Jay and Gao Chang, the first authors of the study, are currently developing more potent combinations of ASOs with the help of artificial intelligence prediction models to achieve enhanced viral inhibition. This collaborative effort includes a partnership with the research teams of Associate Professor Edward Chow from WisDM, NUS Medicine, and NUS Medicine’s BSL3 Core Facility.

Associate Professor Justin Chu, Director of the BSL3 Core Facility at NUS Medicine and co-author of the study, added, “This remarkable extracellular vesicle-based delivery platform technology coupled with anti-viral therapy is highly promising to combat a broad range of viruses and even Disease X.”

The latter is a general description of emerging and unknown infectious threats, such as novel coronaviruses. The term was used to alert and encourage the development of platform technologies, including vaccines, drug therapies, and diagnostic tests, which could be quickly customized and then deployed against future epidemic and pandemic outbreaks. Assoc Prof Chu is also from the Infectious Diseases Translational Research Programme at NUS Medicine.

See also  Studying thin films under extreme temperatures with reflectometry

Professor Dean Ho, Provost’s Chair Professor and Director of WisDM at NUS Medicine, said, “This work brings the scalable and well-tolerated extracellular vesicle-based drug delivery platform an important step closer towards clinical validation studies.”

Provided by
National University of Singapore



Source link

Cell diseases infectious intervention nanosized particles Promising study tool treating
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Scientists discover way to ‘grow’ sub-nanometer sized transistors

News

TiO₂ nanoparticles offer simultaneous arsenic and uranium remediation from groundwater

News

3D printing method reveals light emission from nanowires for the first time

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Optimizing Particle Size Analysis for Light-Absorbing Colloidal Suspensions with the BeNano 180 Zeta Pro

April 14, 2024

Applications of Liquid Cell TEM

September 14, 2023

Researchers achieve efficient nutrient delivery to crop leaves through nanomaterial surface roughness engineering

September 15, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel