Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nano-optical sensors enable structural safety monitoring of buildings with color variations
News

Nano-optical sensors enable structural safety monitoring of buildings with color variations

November 13, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nano-optical sensors enable structural safety monitoring of buildings with color variations
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Graphical abstract. Credit: ACS Applied Nano Materials (2024). DOI: 10.1021/acsanm.4c03243

As buildings age, the demand for effective monitoring of their structural integrity has grown significantly. A breakthrough in nano-optical sensor technology now enables precise, real-time measurement of structural deformation and stability.

This innovation promises to reshape the field of structural diagnostics, offering a cost-effective, time-efficient solution that reduces the need for specialized expertise traditionally required in this area.

Led by Dr. Jae Sung Yoon, Principal Researcher at the Nano-lithography & Manufacturing Research Center within the Nano-convergence Manufacturing Research Division at the Korea Institute of Machinery and Materials (KIMM), affiliated with the Ministry of Science and ICT, and Ph.D. candidate Nguyen Hoang Minh from the UST-KIMM School, the research team drew inspiration from the structural coloration observed in natural phenomena such as peacock feathers and morpho butterflies.

The team successfully developed an advanced film-type strain sensor incorporating nano-fabrication technology. When applied to buildings or other infrastructure, the film’s color shifts in accordance with the extent and nature of deformation, facilitating the accurate and efficient detection of structural aging and damage for safety assessments.

KIMM’s nano-optical sensor technology converts mechanical deformation into visual color changes through the use of nano-patterns. This approach visualizes deformation as image data, eliminating the need for pigments, dyes, or external power sources.

By utilizing smartphone technology to quantify the color, precise and detailed measurements are achieved, streamlining the traditional structural monitoring and measurement process into a simple patch application.

A longstanding technical challenge in nano-structural coloration research has been the variation in color depending on the angle of observation. The research team has achieved a breakthrough by developing a technology that ensures consistent coloration regardless of the viewing angle, marking a world-first achievement.

See also  Innovative Liquid Cushioning Technology Promises Revolution in Safety Gear

This novel nano-pattern maintains a uniform color, providing a standard reference to compensate for angle-related discrepancies, thus enabling precise measurements of deformation regardless of specific observation angles.

Structural safety monitoring of buildings with color variations
Equipment for Nano-Optical Sensor Experiment. Credit: Korea Institute of Machinery and Materials (KIMM)

In addition, the research team has developed an AI-combined monitoring solution that analyzes color changes to assess potential risks.

By diversifying measurement methods through smartphone applications, drones, robotics, CCTV, and other advanced technologies, they are now able to detect and analyze damage and risks in buildings and structures that were previously difficult to assess.

Leveraging this core technology, the team also developed a film capable of controlling the manifestation of color, allowing for its application as a transparent film that reveals patterns only under specific conditions.

This advancement holds significant potential for anti-counterfeiting and security film applications.

KIMM’s nano-optical sensor technology has led to the filing of over 10 domestic patents, as well as an international patent (PCT), with an additional U.S. patent currently under review.

The technology was highlighted as the cover paper in ACS Applied Nano Materials and has also been accepted for publication in Nanoscale Advances.

The research team is actively collaborating with industry partners through technical briefings and exchanges. And the team is now entering a technology transfer agreement with a company, aiming to accelerate the adoption of this innovation.

Dr. Jae Sung Yoon, Principal Researcher at KIMM, said, “This nano-optical sensor technology revolutionizes the assessment of structural aging and stability in buildings and facilities. By delivering a high-precision monitoring solution at a reduced cost, we aim to contribute to enhancing public safety and societal stability.”

See also  The Market Expansion of Nanosensors in Healthcare and Environmental Monitoring

The project, titled “Development of Smart Monitoring Technology for Building Safety and Disaster Management Based on Nano-Optics and Machine Learning,” aligns with the ministry’s mission to advance technological innovation for infrastructure safety.

Provided by
National Research Council of Science and Technology



Source link

buildings color enable monitoring Nanooptical Safety Sensors structural Variations
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Researchers develop high-quality nanomechanical resonators with built-in piezoelectricity

News

How Does Nanoparticle Tracking Analysis Work?

News

Redefining Nanoscale Analysis with FusionScope

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New Method Prevents Allergic Reactions Without Causing Side Effects

January 20, 2024

Nanotunnel dimensions in platinum-gold structures dictate gas adsorption dynamics

February 18, 2025

Nanoscience Applications: Transforming Dermatology

September 4, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel