Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Nano drug delivery system eliminates need for complicated carriers
News

Nano drug delivery system eliminates need for complicated carriers

December 29, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Nano drug delivery system eliminates need for complicated carriers
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Schematic of the assembly of MBN NPs with tunable compositions (e.g., protein and DNA) and functionalities (e.g., molecular recognition) and the assembly of cargo-loaded MBN NPs. Credit: Science Advances (2024). DOI: 10.1126/sciadv.ads9542

A team of University of Melbourne researchers from the Caruso Nanoengineering Group has created an innovative drug delivery system with outstanding potential to improve drug development.

The team has pioneered a drug delivery system that is a coordination network composed of only metal ions and biomolecules, known as metal–biomolecule network (MBN). This system eliminates the need for complicated drug “carriers,” making it potentially more useful in a range of applications.

The research has been published in Science Advances and was led by Melbourne Laureate Professor and NHMRC Leadership Fellow Frank Caruso, from the Department of Chemical Engineering in the Faculty of Engineering and Information Technology, with Research Fellows Dr. Wanjun Xu and Dr. Zhixing Lin joint first authors.

The MBN nanoparticles are formed by combining non-toxic metal ions (such as those absorbed through diet, like calcium or iron) with phosphonate biomolecules (such as DNA, which is the building block of life). The MBN nanoparticles are chemically and metabolically stable and have antiviral, antibacterial, antifungal, anti-inflammatory and anti-cancer properties.

Dr. Zhixing said one of the most significant benefits of the MBN system will be potentially increased success in drug development, because it uses materials highly compatible with the human body and avoids the use of potentially toxic drug carrier systems.

“We have created functional metal−organic networks that can easily assemble biomolecule drugs for biomedical applications such as anti-cancer or anti-viral therapies, gene delivery, immunotherapy, biosensing, bioimaging or drug delivery,” Dr. Zhixing said.

A large number of drug carriers have been developed by scientists around the world, but many of these fail due to toxicity from materials that evoke an immune response.

See also  Study shows optical excitation of hot carriers enables ultrafast dynamic control of nanoscale plasmons

“At present, the challenges of drug development and approval mean that only about one out of 10,000 drug compounds, on average, reaches market approval, with many others failing due to safety issues. Any additional, non-functional components in carriers can potentially increase toxicity,” Dr. Wanjun said.

The team had to overcome the challenge that “free” biomolecular cargoes often cannot reach their target cells to achieve the required biological function. Over the two-year project, they were able to minimize the use of extra, non-functional components and create a simpler material system with greater potential for success, without compromising performance.

There are various strategies to ensure the MBN nanoparticles activate at the required location. For instance, in an acidic cancer environment, such as in tumors associated with breast cancer, where the tumor microenvironment is typically more acidic than surrounding tissues, the engineered nanoparticles could disassemble.

Discover the latest in science, tech, and space with over 100,000 subscribers who rely on Phys.org for daily insights.
Sign up for our free newsletter and get updates on breakthroughs,
innovations, and research that matter—daily or weekly.

Professor Caruso said the MBNs are “tuneable,” which means they can be customized for various biomedical applications, with size, cargo, potential targeting, as well as other properties that can be engineered by selecting different biomolecules, metal ions and assembly conditions. “It provides a modular approach to construct multifunctional nanoparticles with diverse compositions.”

“Our system provides insights into fundamental assembly mechanisms and will allow us to create a library of bioactive nanoparticles for biomedicine, as well as environmental science, where biological barriers to delivery also exist,” Professor Caruso said.

See also  Powering the Next Wave in Electricity Generation

The next phase of the team’s research will focus on gaining a deeper understanding of the MBN system and trialing it to formulate advanced materials aimed at treating diseases.

Provided by
University of Melbourne



Source link

carriers complicated delivery drug eliminates Nano System
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

Nanomedicine advances deliver precise antibiotic doses to fight infections and drug resistance

News

Permselectivity reveals a cool side of nanopores

News

Nanoscale Optical Breakthrough Unlocks a World of Quantum Possibilities

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Design strategies toward plasmon-enhanced 2D material photodetectors

May 6, 2024

Solvent molecules offer non-addictive alternative

December 19, 2024

Drug-filled nanocapsule helps make immunotherapy more effective in mice

October 12, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel