Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»MXene’s path to revolutionizing energy storage and more
News

MXene’s path to revolutionizing energy storage and more

November 30, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
MXene’s path to revolutionizing energy storage and more
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Fabrication of electrically conductive porous silica via infiltration of 2D MXene nanosheets. a) Preparation of silica discs with unidirectional porosity via freeze casting. The blue arrows represent the solidification direction and the main pore orientation. The SEM images show the horizontal (top) and vertical (bottom) cross-sections of the fabricated porous samples (scale bar = 100 µm). b) A MXene infiltrated porous silica sample with a zoomed-in 3D figure showing the thin-layer coating of internal pore surfaces by MXene flakes while preserving the structural porosity. A high-magnification back-scattered SEM image of an infiltrated sample shows the thin-layer MXene coating (scale bar = 10 µm). c) MXene dispersion prepared using the minimally intensive layer delamination (MILD) method. d) The hydrodynamic diameter distribution of 2D Ti3C2Tx nanosheets for the prepared MXene dispersion. A solid model of the dispersed 2D flakes is given in the inset. e) TEM image showing the structure and the size of a single-layer Ti3C2Tx nanosheet with arrows indicating its periphery. False coloring (purple) is used to help with visualization. f) Thermogravimetric analysis (TGA) results for the remaining mass of MXene dispersion as a function of temperature. The mass value at 200° C is used for calculating the MXene concentration of dispersions. Credit: Advanced Materials (2023). DOI: 10.1002/adma.202304757

With a slew of impressive properties, transition metal carbides, generally referred to as MXenes, are exciting nanomaterials being explored in the energy storage sector. MXenes are two-dimensional materials that consist of flakes as thin as a few nanometers.

Their outstanding mechanical strength, ultrahigh surface-to-volume ratio, and superior electrochemical stability make them promising candidates as supercapacitors—that is, as long as they can be arranged in 3D architectures where there is a sufficient volume of nanomaterials and their large surfaces are available for reactions.

During processing, MXenes tend to restack, compromising accessibility and impeding the performance of individual flakes, thereby diminishing some of their significant advantages. To circumvent this obstacle, Rahul Panat and Burak Ozdoganlar, along with Ph.D. candidate Mert Arslanoglu, from the Mechanical Engineering Department at Carnegie Mellon University, have developed an entirely new material system that arranges 2D MXene nanosheets into a 3D structure.

This is accomplished by infiltrating MXene into a porous ceramic scaffold, or backbone. The ceramic backbone is fabricated using the freeze-casting technique, which produces open-pore structures with controlled pore dimensions and pore directionality.

The study is published in the journal Advanced Materials.

“We are able to infiltrate MXene flakes dispersed in a solvent into a freeze-cast porous ceramic structure,” explained Panat, a professor of mechanical engineering. “As the system dries, the 2D MXene flakes uniformly coat the internal surfaces of the interconnected pores of the ceramic without losing any essential attributes.”

As described in their earlier publication, the solvent used in their freeze-casting approach is a chemical called camphene, which produces tree-like dendritic structures when frozen. Other types of pore distributions can also be obtained by using different solvents.

See also  Revolutionizing SOFCs with Thin-Film Electrolyte Innovations

To test the samples, the team constructed “sandwich-type” two-electrode supercapacitors and connected them to an LED light with an operating voltage of 2.5V. The supercapacitors successfully powered the light with higher power density and energy density values than previously obtained for any MXene-based supercapacitors.

“Not only have we demonstrated an exceptional way to utilize MXene, we’ve done so in a way that is reproducible and scalable,” said Ozdoganlar, also a professor of mechanical engineering. “Our new material system can be mass-manufactured at desired dimensions to be used in commercial devices. We believe this can have a tremendous impact on energy storage devices, and thus, on applications such as electric vehicles.”

With outstanding experimental results and electrical conductivity that can be finely tuned by controlling the MXene concentration and the porosity of the backbone, this material system has far-reaching potential for batteries, fuel cells, decarbonization systems, and catalytic devices. We may even see an MXene supercapacitor power our electric vehicles one day.

“Our approach can be applied to other nano-scale materials, like graphene, and the backbone can be built from materials beyond ceramics, including polymers and metals,” Panat said. “This structure could enable a wide range of emerging and novel technology applications.”

Provided by
Carnegie Mellon University Mechanical Engineering



Source link

energy MXenes Path Revolutionizing Storage
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

High-throughput biosensor measures metabolite levels that indicate disease

News

Ultrasensitive molecular sensing with synthesize complex-frequency waves

News

Aerosol jet printing could revolutionize microfluidic device fabrication

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Could a single drug treat the two leading causes of death in the US: Cancer and cardiovascular disease?

September 17, 2023

Unique copper nanocluster design boosts CO₂ reduction selectivity

December 22, 2024

Detecting lung cancer early with sugar-sensing nanotech

July 7, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel