Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Must mRNA be cloaked in a lipid coat to serve as a vaccine?
News

Must mRNA be cloaked in a lipid coat to serve as a vaccine?

April 10, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Must mRNA be cloaked in a lipid coat to serve as a vaccine?
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Top Left: Distribution of vaccines, “Naked mRNA” and “mRNA cloaked in a lipid coat.” Credit: Satoshi Uchida

The Uchida Laboratory of Innovation Center of NanoMedicine has demonstrated that intradermal administration of mRNA alone (naked mRNA) without protection by nanoparticles induced robust vaccination against SARS CoV-2, a virus causing COVID-19, in mice and primates. mRNA is highly unstable, generally considered to require a tiny capsule, such as lipid nanoparticles (LNPs), for administration.

The method reported here is the first naked mRNA vaccine demonstrating prevention against SARS-CoV-2. Without using LNPs, which are highly likely to cause systemic adverse events, this vaccine may allow repeated dosing. It is now under development for clinical trials. Detailed research results will be published in Molecular Therapy.

During the COVID-19 pandemic, mRNA vaccines have demonstrated outstanding efficacy, with billions of doses administered worldwide. However, challenges have arisen amidst their rapid development, notably concerning relatively strong adverse reactions, including severe ones, which remain significant issues.

While these adverse reactions may be deemed acceptable for a limited number of doses during a pandemic, a safer platform allowing multiple doses over a lifetime is desirable for ongoing COVID-19 boosters and the extension of mRNA vaccine application to other infectious diseases. Current mRNA vaccines have been associated with adverse reactions, primarily attributed to lipid nanoparticles (LNPs) that carry the mRNA (mRNA cloaked in a lipid coat).

LNPs possess immunostimulatory properties and can spill out of the injection site, leading to systemic inflammatory responses. Nonetheless, LNPs play crucial roles in vaccine efficacy, such as [Function I] preventing mRNA degradation and efficiently delivering mRNA into cells, [Function II] migrating to lymph nodes to deliver mRNA into immune cells, and [Function III] stimulating the immune system through immunostimulatory lipids. The present study aims to obtain these functions without relying on LNPs.

See also  Tracking the dynamics of biomolecules with optofluidic antennas

This study provides a straightforward and safe design, the administration of naked mRNA. Regarding [Function II], few immune cells reside in muscle tissue, a current administration site of mRNA vaccines. Therefore, the skin tissue, which is more abundant in immune cells, was targeted.

Furthermore, for [Function I], the research team used a Jet Injector that facilitates mRNA delivery to the skin cells utilizing physical stress induced by jet flow. In a reporter study, Jet Injector improved the mRNA delivery efficiency by more than 100-fold compared to a conventional needle and syringe injection. Also, mRNA stayed at the injection site without detectable systemic leakage.

Must mRNA be cloaked in a lipid coat to serve as a vaccine?
Jet Injector used for the injection of “Naked mRNA” Credit: Satoshi Uchida

On the other hand, mRNA-loaded LNPs (mRNA cloaked in a lipid coat) migrated to the liver, spleen, and other systemic organs after intradermal administration, provoking inflammations there. In addition, inflammation at the injection site was very minor in our method, whereas mRNA cloaked in a lipid coat induced infiltration of inflammatory cells and tissue necrosis.

Next, the research team first demonstrated the vaccination ability of naked mRNA using a model antigen. The jet injector drastically improved the efficacy of antibody production to a level comparable to that of mRNA cloaked in a lipid coat at the maximum tolerable doses.

These antibodies combat viruses in the body, preventing infection, but they cannot remove infected cells. On the other hand, cellular immunity removes such diseased cells, playing a critical role in preventing severe diseases. Intriguingly, the naked mRNA vaccine effectively increases the number of immunocytes, such as CD4-positive T cells and CD8-positive T cells.

Then, the research team conducted virus challenge experiments after the naked mRNA vaccination targeting the spike protein of the SARS-CoV-2 virus. The vaccination significantly lowered the amount of virus in the lungs and alleviated lung inflammation compared to an unvaccinated control. This vaccine provided cynomolgus monkeys with vaccine efficacy comparable to that of mice without significant adverse reactions.

See also  Hidden transport pathways in graphene confirmed, paving the way for next-generation device design

The present study also includes mechanistic analyses. Regarding [Function II], the naked mRNA vaccine stayed at the injection site and did not migrate to the lymph nodes. On the other hand, antigen-presenting cells that took up mRNA at the injection site migrated to the lymph nodes, which may contribute to the vaccination efficacy.

Indeed, the vaccine-induced the maturation of the lymph node near the injection site. For [Function III], the Jet Injector caused transient inflammation localized to the injection site, recruiting lymphocytes. Needle and syringe injection of naked mRNA did not induce such an inflammatory response. These results suggest that the immune stimulation by Jet Injector may function as a Physical Adjuvant to enhance the vaccination efficacy. Observed local inflammatory reactions disappeared within a few days.

In conclusion, the naked mRNA vaccine reduces systemic adverse reactions, an issue with mRNA cloaked in a lipid coat, and induces immunity sufficient for the protection from infectious diseases. This is a world-leading achievement in preventing infectious diseases with mRNA alone. Practically, this vaccine may become a platform that allows repeated dosing with minor adverse reactions. Currently further studies are being conducted, with the aim of a clinical trial planned for 2026.

Provided by
Innovation Center of NanoMedicine


Source link

cloaked coat Lipid mRNA serve vaccine
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

Opening a new chapter in 3D microprinting with MXene

News

Scientists discover new type of quasiparticle present in all magnetic materials

News

Scientists merge two ‘impossible’ materials into new artificial structure

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New capabilities in DNA nanostructure self-assembly eliminate need for extreme heating and controlled cooling

March 21, 2025

Unlocking Chemical Secrets: Applications of Raman Spectroscopy

August 18, 2024

New Approaches for Drug Delivery

September 11, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel