Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Mini liver model innovations promise more effective drug testing
News

Mini liver model innovations promise more effective drug testing

June 30, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Mini liver model innovations promise more effective drug testing
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
(A) SEM images of S-NS 005 on day 5; (B) S-NS 005 (C) S-NS 01 with HepG2 cells staining with Hoechst 33342(Red), coumarin-loaded PCL nanofiber fragments (Green) and overlay (Yellow). Scale bar: 50 μm. Objective: 10×. Credit: ACS Applied Materials & Interfaces (2024). DOI: 10.1021/acsami.3c17384

A laboratory-grown mini liver model uniquely created with liver cells and a synthetic nanoscaffold has shown to be effective in mimicking the liver, promising a new and more effective testing method for medicines that is more ethical than animal testing.

The mini liver model, which was created in Dr. Bahijja Raimi-Abraham’s laboratory, uses a novel approach that combines liver cells with synthetic scaffolds. These mini livers, or 3D liver spheroids, are designed to mimic the structure and function of the human liver more accurately than traditional 2D cell culture models. This approach offers a promising alternative to animal models for preclinical drug screening and toxicity testing.

“This research marks a crucial milestone in the pursuit of ethical and effective drug testing methods. By accurately replicating human liver functions, our laboratory-grown mini liver model not only addresses the ethical concerns associated with animal testing but also offers a more reliable platform for evaluating drug safety and efficacy,” said Dr. Raimi-Abraham, Senior Lecturer in Pharmaceutics.

Drug discovery research has used animal models for decades to test the safety of new medical candidates. However, animal models pose significant ethical concerns and practical challenges, including physiological differences between animals and humans, high costs, and tissue availability. Consequently, there is growing interest in developing non-animal testing methods, one of which is using laboratory-grown human cell models.

The liver plays a crucial role in drug development as a major site for drug metabolism. However, drug-induced liver injury (DILI) is a key roadblock as metabolic reactions can result in toxic side effects. This can result in acute liver failure and a frequent factor in drug withdrawals during clinical trials.

Mini liver model innovations promise more effective drug testing
Characterization of nanofibers. (A) SEM images for PCL nanofiber mesh. (B) SEM images for nanoscaffolds. (C) Distribution of the length and diameter of the nanoscaffolds (Taken from 100 different nanofibers). (D) ATR-FTIR for Raw PCL, PCL nanofibre mesh and nanoscaffolds. Credit: ACS Applied Materials & Interfaces (2024). DOI: 10.1021/acsami.3c17384

To overcome this barrier, Dr. Raimi-Abraham’s team have designed a new laboratory-grown mini liver model created with liver cells and a synthetic nanoscaffold that effectively mimics liver cells for drug testing. The synthetic nanoscaffold was constructed to provide a supportive structure for the liver cells, creating a “cell soup” that contains the liver cells and the connecting nanoscaffold.

See also  Novel nano-vaccine administered as nasal spray found to be effective against all major COVID-19 variants

Their results, published in ACS Applied Materials & Interfaces, highlights the success of the new laboratory-grown mini livers, which demonstrated superior cell assembly and liver replication. Further analysis showed that these models exhibited enhanced drug metabolism capabilities compared to other mini liver models that didn’t use the nanoscaffold.

This indicates that the new laboratory-grown mini liver model could have the potential to replace animal testing in drug screening. By addressing the ethical and practical of animal models, including physiological differences, associated high costs and limited tissue availability, this innovative approach shows great potential as a more accurate and ethical alternative.

“This research represents a pivotal moment in my Ph.D. journey, offering both a profound sense of achievement and a glimpse into the future of biomedical innovation. Developing the mini liver model has not only been a testament to the potential of nanotechnology in advancing medical research but also a deeply rewarding experience in overcoming complex scientific challenges,” said Lina Wu, China Scholarship Council Ph.D. Researcher, King’s.

In response to ethical concerns, medical regulators including the US Food and Drug Administration (FDA) and the Medicines and Healthcare products Regulatory Agency (MHRA) have advocated for the increased uptake of non-animal models in drug discovery and development. The FDA Modernization Act 2.0 now permits alternatives to animal testing for drug and biological product applications. Dr. Bahijja Raimi-Abraham and her team believe their laboratory-grown mini livers represent a critical step in this transition.

Beyond mini liver models, The Raimi-Abraham lab aims to apply their nanoscaffold technology to develop models for other organs and create mini-organ models integrated with microbes to model specific infectious diseases such as malaria. Further research will also look more closely at the molecular mechanisms which the nanoscaffolds use to support the cells within the models.

See also  Reactant enrichment of nanoreactors boosts hydrogenation performance

Provided by
King’s College London



Source link

drug effective Innovations Liver Mini model promise testing
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

The Role of Nanotechnology in Modern Industry

Tiny tech with big potential

News

A dynamic matrix with DNA-encoded viscoelasticity to support the development of organoids and other biological tissues

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Graphene’s Light-Speed Electrons Promise Revolution in Nanoscale Transistors

April 20, 2024

Scientists enhance localized surface plasmon resonance through oxide particle superlattices

February 16, 2025

Extending the shelf life of produce

July 31, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel