Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Metamolecule metamaterial fabrication with 3D co-assembly
News

Metamolecule metamaterial fabrication with 3D co-assembly

November 5, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Metamolecule metamaterial fabrication with 3D co-assembly
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
3D co-assembly of free-standing and freeform metamaterials using micropipette tips showcasing scattering reduction. Credit: POSTECH

Metamaterials, famously likened to Harry Potter’s invisible cloak, are artificial nano structures designed to manipulate light properties. However, the practical application of this technology in everyday life depends on the commercialization of the manufacturing process which requires significant costs.

A research team led by Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering, researcher Won-Geun Kim and Ph.D. candidate Hongyoon Kim from the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH) has devised an approach.

Their method combines three-dimensional nano printing with co-assembly technology, bringing metamaterials one step closer to becoming commercially available. These research findings have been featured in Small.

Traditionally, metamaterials are crafted by depositing physical and chemical layers onto materials such as silicon and resin (plastic), followed by a process called lithography. Regrettably, this method is both expensive and limited in terms of applicable materials. Consequently, the academic community has recently shifted its focus towards creating metamaterials through the assembly of particles rather than the costly process of surface shaving.

In this research, the research team employed a combination of three-dimensional nano printing and co-assembly techniques. Initially, they crafted raspberry-like metamolecules by using silica (glass) and gold nanoparticles of varying sizes. Subsequently, these raspberry-like structures were stacked atop one another, resulting in the successful creation of millimeter-sized metamaterials.

In essence, the research team has devised a process technology that enables the cost-effective production of metamaterials in desired shapes as opposed to conventional and more expensive methods.

The experiments conducted showcased the light-controlling capabilities of metamaterials generated through the team’s process. Notably, there was a significant reduction in scattered light within the visible region. This research marks the first instance of verifying the optical properties of metamolecules in solution using the millimeter-sized structures.

See also  Novel fabrication technique takes transition metal telluride nanosheets from lab to mass production

This approach allows for results to be observed with the naked eye or through a simple microscope setup, eliminating the need for specialized equipment for verification. Additionally, the team achieved fine-tuned control over the optical properties by adjusting the ratio of silica and gold nanoparticles within the metamaterial.

Professor Junsuk Rho who led the research stated, “This breakthrough enables the design and implementation of free-form nanophotons, surpassing the limitations of existing metamaterial fabrication processes. The versatility of this technology affords a wide range of material choices including quantum dots, catalyst particles, and polymers, making it applicable to diverse fields from sensors to displays in addition to metamaterial research.”

Provided by
Pohang University of Science and Technology



Source link

coassembly fabrication metamaterial Metamolecule
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Spinning, magnetic micro-robots help researchers probe immune cell recognition

News

First comprehensive characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films

Engineers develop first deep-UV microLED display chips for maskless photolithography

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

MIT’s Electron Spin Magic Sparks Computing Evolution

March 17, 2024

Looking inside a microchip with 4 nanometer precision

August 16, 2024

Vortion, a new magnetic state able to mimic neuronal synapses

March 7, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel