Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Metal-free graphene quantum dots show promise for highly efficient tumor therapy
News

Metal-free graphene quantum dots show promise for highly efficient tumor therapy

January 20, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Metal-free graphene quantum dots show promise for highly efficient tumor therapy
Schematic illustration showing the role of GQDs, derived from erythrocyte membranes, as peroxidase—mimic enzyme for tumor catalytic therapy. Credit: FHIPS

A research group led by Prof. Wang Hui from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences has introduced a metal-free nanozyme based on graphene quantum dots (GQDs) for highly efficient tumor chemodynamic therapy (CDT). The study is published in Matter.

GQDs represent a promising and cost-effective means of addressing the toxicity concerns associated with metal-based nanozymes in tumor CDT. However, the limited catalytic activity of GQDs has posed significant challenges for their clinical application, particularly under challenging catalytic conditions.

“The obtained GQDs, which are made from red blood cell membranes, are highly effective in treating tumors with few side effects,” said Liu Hongji, a member of the research team. “One of the advantages is that they are metal-free. In addition, they function as excellent peroxidase-like biocatalysts.”

To enhance the catalytic performance of the GQD-based nanocatalytic adjuvant, the researchers rationally designed GQDs using a diatomic doping strategy. The synergistic electron effect of introducing nitrogen and phosphorus into GQDs can generate highly localized states near the Fermi level, thus enabling efficient enzymatic activity compared to single heteroatom doping.

The obtained GQDs, derived from erythrocyte membranes, have been shown to possess impressive peroxidase-mimicking activity. As a result, the GQDs are highly effective at inducing apoptosis and ferroptosis of cancer cells in vitro. They also selectively target tumors, with a tumor inhibition rate as high as 77.71% for intravenous injection and 93.22% for intratumoral injection, with no off-target side effects.

This drug-free, target-specific, and biologically benign nanozyme has great potential as a potent biocatalyst for use in safe cancer treatment.

See also  What is a Molecular Switch?

Provided by
Chinese Academy of Sciences



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025

2D Janus heterobilayers lead the way

May 27, 2025

Comments are closed.

Top Articles

Scientists grow human mini-lungs as animal alternative for nanomaterial safety testing

News

Should PFAS Use Be Restricted in the Semiconductor Sector?

News

Nanotech reveals how harmful microplastics stick to coral reefs

Editors Picks

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Angle-dependent holograms made possible by metasurfaces

February 29, 2024

Developing an autonomous AI assistant to build nanostructures

January 26, 2025

Imaging technique shows new details of peptide structures

May 1, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel