Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Liver-targeting drug delivered via nanogel carrier reverses obesity, lowers cholesterol in mice
News

Liver-targeting drug delivered via nanogel carrier reverses obesity, lowers cholesterol in mice

September 8, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Liver-targeting drug delivered via nanogel carrier reverses obesity, lowers cholesterol in mice
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Diet-induced obesity was reversed in mice after they were given a thyromimetic drug delivered directly to the liver via a nanogel-based carrier. Credit: Thayumanavan Lab, UMass Amherst

A University of Massachusetts Amherst biomedical engineer has used a nanogel-based carrier designed in his lab to deliver a drug exclusively to the liver of obese mice, effectively reversing their diet-induced disease.

“The treated mice completely lost their gained weight, and we did not see any untoward side effects,” says S. Thai Thayumanavan, distinguished professor of chemistry and biomedical engineering. “Considering 100 million Americans have obesity and related cardiometabolic disorders, we became pretty excited about this work.”

Efforts to translate these findings to humans are being pursued by a start-up company Cyta Therapeutics, which was founded at the UMass Institute for Applied Life Sciences (IALS) based on the nanogel technologies from the Thayumanavan lab. In late July, Cyta Therapeutics won the Judges’ Choice Best Startup at the 16th annual Massachusetts Life Sciences Innovation (MALSI) Day in Boston.

“There is a significant amount of development work to be conducted between mice and humans,” Thayumanavan says, “but we are hoping it will eventually become a drug.”

Senior author Thayumanavan, director of the Center for Bioactive Delivery at IALS, explains his team’s findings in a paper published Tuesday, Aug. 29, in the PNAS Nexus. Ruiling Wu, doing research for her Ph.D. in chemistry in Thayumanavan’s lab and at the Center for Bioactive Delivery, is the paper’s lead author. Wu recently graduated and now works for a pharmaceutical company in Boston.

One of the center’s primary goals is figuring out how to get the right drug to the right place in the body by creating novel delivery platforms for small and large molecules.

See also  Electrical Characterization Through Scanning Microwave Impedance Microscopy

Thyromimetics, or drugs that mimic synthetic thyroid hormone, have been considered as a potential way to tackle the problem of obesity, type 2 diabetes, high cholesterol, metabolic dysfunction-associated steatohepatitis (MASH) and other metabolic conditions. Targeted therapy is key, however. Thayumanavan and his team looked at one such thyromimetic.

“We realized we needed to deliver this drug selectively to the liver because if it goes to other places, it could cause complications,” he says. In addition to side effects, taking the drug systemically was expected to dilute its effectiveness, which was confirmed in the study.

Thayumanavan and team fed a group of mice a high-fat, high-sugar, high-cholesterol diet for 10 weeks, doubling their weight. A control group of mice were fed a healthy diet.

“We came up with a very simple approach, using our unique invention—nanogels that we can direct selectively to different targets, which we call IntelliGels,” Thayumanavan says. “They were custom-designed for hepatocyte delivery in the liver.”

The obese mice were given the drug daily, packaged inside the nanogel and delivered to the mice via intraperitoneal (IP) injection.

Once the nanogel carrier is inside the hepatocyte cells, glutathione in the cells breaks down bonds in the nanogel, releasing the drug. The drug then activates thyroid hormone beta receptor, leading to systemic lipid lowering, increased bile acid synthesis and fat oxidation.

After five weeks of treatment, the mice returned to a normal weight—even as their high-fat diet continued. The mice also saw their cholesterol levels drop and their liver inflammation resolve.

“We really wanted to find out the factors that got affected,” Thayumanavan says. “We found that we are activating the reverse cholesterol transport pathway, which lowering of cholesterol. We believe that activation of fat oxidation and an increase in metabolic rate are causing the loss in weight, but more work needs to be done to prove that point.”

See also  Nanomedicine advances deliver precise antibiotic doses to fight infections and drug resistance

Now that the mechanism is better understood, the paper notes, “the drug-encapsulated nanogels open up the possibility for nanoparticle-mediated pharmaceutical strategies for other liver-based diseases.”

Provided by
University of Massachusetts Amherst



Source link

carrier cholesterol delivered drug Livertargeting lowers mice nanogel obesity reverses
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

Researchers develop self-assembling, self-illuminating therapeutic proteins

News

Study shows how organic molecules impact gold nanoparticles’ electrochemical properties

News

Study finds iron-rich enamel protects, but doesn’t color, rodents’ orange-brown incisors

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Color-changing sensor offers new way to track motion and stress

December 24, 2024

Bioimaging Developments with Magnetic Iron Oxide Nanoparticles

January 26, 2024

Scientists learn how to make nanotubes that point in one direction

December 24, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel