Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Lipid nanoparticle mRNA therapy improves survival in mouse models of maple syrup urine disease
News

Lipid nanoparticle mRNA therapy improves survival in mouse models of maple syrup urine disease

August 27, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Lipid nanoparticle mRNA therapy improves survival in mouse models of maple syrup urine disease
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
A hairpin loop from a pre-mRNA. Highlighted are the nucleobases (green) and the ribose-phosphate backbone (blue). Note that this is a single strand of RNA that folds back upon itself. Credit: Vossman/ Wikipedia

Researchers from the University of Pennsylvania, Perelman School of Medicine, Gene Therapy Program, and Moderna, have shown that repeated administration of lipid nanoparticle-encapsulated mRNA therapy significantly extended survival and reduced serum leucine levels in a mouse model of maple syrup urine disease (MSUD).

The work appears in Human Gene Therapy.

The researchers, led by James Wilson, M.D., Ph.D., from the University of Pennsylvania, Perelman School of Medicine, evaluated a lipid nanoparticle-based treatment approach to address all possible genetic mutations that can cause MSUD.

“Repeated intravenous delivery of lipid nanoparticle-encapsulated mRNAs encoding hBCKDHA, hBCKDHB, and hDBT increased survival and body weight, and decreased serum leucine levels in a hypomorphic MSUD mouse model that survives until weaning without clinical intervention,” stated the investigators. “Repeated administration of LNP-encapsulated mRNAs may represent a potential long-term universal treatment approach for MSUD.”

In another new study emerging from Dr. Wilson’s laboratory, researchers identified a novel family of adeno-associated virus (AAV) variants with desirable biodistribution properties that may be useful for targeting tissues other than the liver, such as the heart.

To improve the safety and cost of AAV gene therapy, capsid engineering efforts are aimed at redirecting in vivo AAV biodistribution away from the liver toward disease-relevant peripheral organs. One newly identified variant exhibited a six-fold reduction in liver RNA expression and a ten-fold increase in cardiac RNA expression compared with wild-type AAV9 in the mouse.

“The first of the two studies from the Wilson laboratory demonstrates correction of one of the classical inborn errors of metabolism, MSUD, a disease which can be caused by any of several different genes encoding the components of a multi-subunit enzyme complex responsible for degrading branched-chain amino acids,” says Editor in Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School.

See also  Nanoparticle immune therapy shows potential to halt pancreatic cancer spread

“The other paper from the Wilson lab represents an important advance in AAV capsid engineering to deliver genes more selectively to the heart while decreasing exposure of the liver, thus making the vector safer.”

Provided by
Mary Ann Liebert, Inc



Source link

Disease improves Lipid maple models mouse mRNA Nanoparticle survival syrup Therapy urine
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
Research

Food Companies Banking on Nano Innovations

News

Team uses ‘nanoruler’ to determine threshold for tissue permeability of brain tumors

Research

Navigating the Future of Neuromorphic Computing

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Phasons enable interlayer excitons to move at low temperatures for quantum stability

March 28, 2025

What is Raman Microspectrometry and Why is it Used?

March 18, 2024

Adequately stabilized and exposed Cu/CuₓO heterojunction on porous carbon nanofibers

May 5, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel