Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Nanomaterials»Lined-up quantum dots become highly conductive
Nanomaterials

Lined-up quantum dots become highly conductive

August 12, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Lined-up quantum dots become highly conductive
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Assemblies of quantum dots tend to be highly disordered, but when the facets of these tiny semiconducting structures are lined up like soldiers on parade, something strange happens: the dots become very good at conducting electricity. This is the finding of researchers at the RIKEN Center for Emergent Matter Science in Japan, who say that these ordered, quasi-two-dimensional “superlattices” of quantum dots could make it possible to develop faster and more efficient electronics.

Quantum dots are semiconductor structures that confine electrons in all three spatial dimensions. This confinement means that quantum dots behave in some ways like single quantum particles even though they contain thousands of atoms and measure up to 50 nm across. Thanks to their particle-like properties, quantum dots have found use in many optoelectronics applications, including solar cells, biological imaging systems and electronic displays.

There is a snag, however. The general disorderliness of quantum dot assemblies means that charge carriers do not flow efficiently through them. This makes their electrical conductivity poor, and standard techniques for introducing order have not helped much. “Although the order of the assemblies can be improved, we found that it is not enough,” says Satria Zulkarnaen Bisri, who led the RIKEN study and is now an associate professor at the Tokyo University of Agriculture and Technology.

A fresh look at quantum dots

Bisri explains that to improve quantum dots’ conductivity, we need to look at them in a different way – not as spherical objects, as is currently the case, but as chunks of matter with a suite of unique crystallographic properties inherited from their compound crystal structure. “Orientation uniformity of the quantum dots is also important,” he says. “Understanding this enabled us to formulate a way to control the assembly of the quantum dots by tuning the interaction between facets of neighbouring quantum dots.”

See also  Twisted bowties created with continuous chirality

The researchers made their quantum dot assemblies, or superlattices, by creating what is known as a Langmuir film. Bisri describes this process as a bit like drizzling oil on the surface of water and letting it spread into a very thin layer. In their experiment, the “oil” is the quantum dots, while the “water” is a solvent that helps the dots connect to each other selectively, via certain facets, to form an ordered monolayer, or superlattice.

“The good properties of this monolayer superlattice are that the large-scale order and the coherent orientation of the quantum dot building blocks minimize energetic disorders throughout the assembly,” Bisri tells Physics World. “This allows for more precise control over the electronic properties of the dots.”

At higher doping levels, charge transport from one quantum dot to another is no longer governed by a hopping transport process
Hopping versus delocalized transport. Courtesy: SZ Bisri

The RIKEN researchers found that they could make their system up to a million times more conductive than assemblies of quantum dots that were not connected epitaxially in this way. Bisri explains that this increase in conductivity is associated with an increase in the doping level of charge carriers in the system. At this higher doping, charge transport from one quantum dot to another is no longer governed by a hopping transport process (as occurs in an insulator), but by a delocalized transport mechanism through electronic minibands – “just as what would happen in a metallic material,” Bisri says.

Faster and more efficient electronic devices

High conductivity and metallic behaviour in semiconducting colloidal quantum dots could bring significant advantages for electronic devices, making it possible to develop faster and more efficient transistors, solar cell, thermoelectrics, displays and sensors (including photodetectors), Bisri adds. The materials could also be used to investigate fundamental physical phenomena such as strongly correlated and topological states.

See also  The Quantum Shift in Data Storage: A New Dawn with DNA

The researchers now plan to study other quantum dot compounds. “We would also like to achieve similar or even better metallic behaviour using other means besides electrical field-induced doping,” Bisri reveals.

They detail their present work in Nature Communications.

Source link

conductive dots highly Linedup quantum
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

New contact lenses allow wearers to see in the near-infrared

May 30, 2025

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Quantum confinement explains the dramatic rise of electrical resistivity in few-nanometers-thick silicon sheets

April 27, 2025

Reshaping quantum dots production through continuous flow and sustainable technologies

April 20, 2025

Controlling quantum light at room temperature with tunable nanostructures and low voltage

April 9, 2025

Comments are closed.

Top Articles
News

3D printing method could improve micro energy storage

News

High-throughput biosensor measures metabolite levels that indicate disease

News

Ultrasound beam triggers ‘nanodroplets’ to deliver drugs at exactly the right spot

Editors Picks

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Light momentum turns pure silicon from an indirect to a direct bandgap semiconductor

September 28, 2024

Novel toxic gas sensor improves the limit of nitrogen dioxide detection

January 7, 2024

Successful development of the world’s first superconducting wide-strip photon detector

November 7, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel