Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Medical»Light-driven bacteria could be used to target and kill cancer cells
Medical

Light-driven bacteria could be used to target and kill cancer cells

August 30, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Light-driven bacteria could be used to target and kill cancer cells
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Targeting malignant tumors with high precision is challenging for biomedical researchers. However, this scenario is likely to witness a paradigm shift in the near future, through the use of specially engineered bacteria, that can eliminate malignant cells efficiently.

Using bacteria to target cancer cells, or bacterial therapy, can be further enhanced through genetic engineering and nanotechnology. However, its efficacy may be hindered due to technical constraints and the potential development of antibiotic resistance. Hence, it is crucial to achieve the moderate yet effective chemical modification of bacteria for improved biocompatibility and functionality, such that their medical abilities are not compromised.

Recently, certain types of purple photosynthetic bacteria (PPSB) have come into limelight for their potential to address the challenges of bacterial therapy. Exploring this further, a study published online on 14 August, 2023 in Nano Today reports the use of chemically modified PPSB for detecting and eliminating hard-to-eradicate cancerous cells in a mouse model.

The study, led by Associate Professor Eijiro Miyako from the Japan Advanced Institute of Science and Technology (JAIST), selected Rhodopseudomonas palustris (RP) as the optimal bacterium for conducting the studies. “RP demonstrated excellent properties, such as near-infrared (NIR) fluorescence, photothermal conversion, and low cytotoxicity. It absorbs NIR light and produces free radicals—a property that can be utilized to kill cancer cells,” explains Prof. Miyako.

In an attempt to improve the therapeutic efficacy of the isolated strain, the team sought chemical modifications to alter the bacterial membranes. First, they performed membrane PEGylation, or the attachment of polyethylene glycol derivatives to the bacterial cell walls. Prior research indicates that bacterial PEGylation helps in evading host immune response and converts light energy into heat, which can then be utilized to selectively eliminate cancerous cells.

See also  UQ opens new facility for personalized mRNA cancer vaccine development

The initial results were encouraging. For instance, coating the RP membrane surface with a “Biocompatible Anchor for Membrane (BAM)” did not adversely affect RP cell viability for at least a week. Moreover, the BAM-functionalized RPs were not eliminated via phagocytosis by macrophages—cells that play a key role in the immune system’s defensive actions against bacterial invasions.

Next, the researchers attached a fluorescent “Alexa488-BSA” conjugate to the BAM-functionalized RPs, thus creating a bacterial complex with a trackable fluorescent marker. This conjugate was subsequently replaced with a “PD-L1” antibody. Prior studies have shown that cancer cells express a protein called “Programmed Cell Death Ligand 1 (PD-L1)” on their surface. PD-L1 can smoothly turn off the host defense system by binding to PD-1 receptors. This allows the cancer cells to evade immune detection and elimination. Anti-PD-L1 antibodies block this interaction, thus preventing cancer cells from bypassing immune-system-mediated destruction.

As expected, both anti-PD-L1-BAM-RP and RP, inhibited tumor growth in a murine model of colon cancer. However, anti-PD-L1-BAM-RP, BAM-RP, and RP, when excited with a laser, showed an especially dramatic anticancer effect. In fact, solid tumors vanished completely following the laser irradiation of anti-PD-L1-BAM-RP, BAM-RP, or RP that were injected into tumor-bearing mice. Further, on assessing photothermal conversion properties, both anti-PD-L1-BAM-RP and natural RP exhibited strong photothermal conversion due to the presence of light-driven bacteriochlorophyll (BChl) molecules.

Among the various bioconjugates, anti-PD-L1-BAM-RP showed the highest efficacy in the initial stage of the treatment. Moreover, it was not toxic to surrounding healthy cells or to the murine host. Subsequent experiments revealed the underlying mechanism of colon tumor annihilation in the mouse model.

See also  Studying Cells and Microtissues Using Micro- and Nanofabricated Biomaterials

“Our findings revealed that light-driven functional bacteria demonstrated effective optical and immunological functions in the murine model of colon cancer. Moreover, the NIR fluorescence of the engineered bacterial complexes was used to locate tumors, effectively paving the way for future clinical translation,” says Prof. Miyako.

He further adds, “We believe that this bacterial technology could be available for clinical trials in 10 years and have positive implications for cancer diagnosis and therapy.“

Here’s hoping that bacterial therapy helps researchers, oncologists, and patients with cancer with much needed relief.

Source:

Japan Advanced Institute of Science and Technology

Journal reference:

Reghu, S., et al. (2023). Cancer immunotheranostics using bioactive nanocoated photosynthetic bacterial complexes. Nano Today. doi.org/10.1016/j.nantod.2023.101966.

Source link

bacteria cancer cells kill Lightdriven target
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Biosensor uses pH-responsive DNA nanoswitches for highly sensitive bladder cancer detection in urine

May 24, 2025

In What Ways Can Nanosensors Be Used to Detect Cancer?

April 22, 2025

AI combined with nanotech can detect oral cancer earlier

April 21, 2025

Light-driven inversion of supramolecular chirality

April 18, 2025

Engineers develop a way to mass manufacture nanoparticles that deliver cancer drugs directly to tumors

April 15, 2025

Drug-delivering aptamers target leukemia stem cells for a one-two knockout punch

April 15, 2025

Comments are closed.

Top Articles
News

Scientists develop starch nanocomposite films that pave the way for green electronics

Research

Nanotechnology Companies Paving the Way for Environmental Solutions

News

The Photovoltaic Properties of Gold Nanoclusters

Editors Picks

The Future of Needle-Free Immunization

May 28, 2025

Nanoparticle-cell interface enables electromagnetic wireless programming of mammalian transgene expression

May 28, 2025

Finely-tuned TiO₂ nanorod arrays enhance solar cell efficiency

May 28, 2025

Different DLS-Based Systems Can Give Us Different Size Results

May 27, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

2D Materials and a Circular Economy: Roadblocks for Sustainability

December 9, 2023

Nanoparticles enhance locusts’ sense of smell

February 21, 2024

Airy cellulose from a 3D printer

April 14, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel