Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Investigating and fine-tuning the properties of ‘magic’ graphene
News

Investigating and fine-tuning the properties of ‘magic’ graphene

December 8, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Investigating and fine-tuning the properties of ‘magic’ graphene
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The two graphene layers are twisted relative to one another by the magic angle of approximately 1.1°. Depending on how many electrons a single cell is filled with, the graphene exhibits different electrical and magnetic properties. Measurements can be made using the oscillating tip of an atomic force microscope. The green surface is doped with an excess of electrons, while the red surface is underdoped. Polarized circular currents are induced by the magnetic field. Credit: Department of Physics, University of Basel

Recent advances in the development of devices made of 2D materials are paving the way for new technological capabilities, especially in the field of quantum technology. So far, however, little research has been carried out into energy losses in strongly interacting systems.

With this in mind, the team led by Professor Ernst Meyer from the Department of Physics at the University of Basel used an atomic force microscope in pendulum mode to investigate a graphene device in greater detail. For this, the researchers utilized a two-layer graphene, fabricated by colleagues at LMU Munich, in which the two layers were twisted by 1.08°.

When stacked and twisted relative to one another, the two layers of graphene produce “moiré” superstructures, and the material acquires new properties. For example, when the two layers are twisted by the so-called magic angle of 1.08°, graphene becomes a superconductor at very low temperatures, conducting electricity with almost no energy dissipation.

Fine-tuning the properties

Using atomic force microscopy (AFM) measurements, Dr. Alexina Ollier has now been able to prove that the twist angle of the atomic graphene layers was uniform across the entire layer, at about 1.06°. She was also able to measure how the current-conducting properties of the graphene layer can be changed and adjusted as a function of the charge applied to the device.

Depending on the “charging” of the individual graphene cells with electrons, the material behaved as an insulator or a semiconductor. The relatively high temperature of 5 Kelvin (-268.15°C) during the measurements meant that the researchers did not achieve superconductivity in the graphene, as this phenomenon—current conduction with no energy dissipation—only occurs at a much lower temperature of 1.7 Kelvin.

See also  Nanopatterned graphene enables infrared 'color' detection and imaging

“We were able, however, not only to modify and measure the current-conducting properties of the device,” explains Ollier, first author of the study now published in Communications Physics, “but also to impart magnetic properties to the graphene—which, of course, consists of nothing but carbon atoms.”

“It is an achievement that we’re able to image tiny graphene flakes in electrical components, change their electrical and magnetic properties, and measure them precisely,” says Meyer regarding the work, which formed part of a doctoral thesis at the SNI Ph.D. School. “In the future, this method will also help us to determine the energy loss of various two-dimensional components in the event of strong interactions.”

Provided by
University of Basel



Source link

finetuning Graphene Investigating magic properties
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

A microchip designed to transform the production of mRNA therapeutics and vaccines

News

Metamolecule metamaterial fabrication with 3D co-assembly

In vivo production of CAR-T cells using virus-mimetic fusogenic nanovesicles

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists create material that can take the temperature of nanoscale objects

August 24, 2024

Compare Lipid Nanoparticles With and Without RNA

September 28, 2023

Tiny dancers: Scientists synchronize bacterial motion

December 11, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel