Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»Research»Innovative Optical Nanoprobes Enhance Cancer Imaging Precision
Research

Innovative Optical Nanoprobes Enhance Cancer Imaging Precision

July 23, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Innovative Optical Nanoprobes Enhance Cancer Imaging Precision
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

In today’s medical landscape, the need for more precise and early detection of cancer is critical. Early and accurate identification of aggressive cancer cells can significantly enhance treatment outcomes and patient prognosis. This urgency has driven researchers to explore innovative technologies to aid clinicians in distinguishing between localised cancers and those that have metastasised and have the potential to spread throughout the body. One such advancement is the development of a new optical tool by engineers at Johns Hopkins University, known as SPECTRA.

SPECTRA, which stands for Surface-Enhanced Raman Scattering (SERS) with DNA Origami, uses nanoprobes that illuminate upon attaching to aggressive cancer cells. This novel approach offers a more powerful means for cancer detection and imaging, potentially revolutionising how clinicians identify and treat cancer. “Our findings show that SPECTRA has huge potential for cancer detection and imaging,” said Ishan Barman, a professor of mechanical engineering at the Whiting School of Engineering. “We’re giving clinicians a more powerful tool that can find cancer cells earlier and more precisely than ever before.”

The team’s groundbreaking research has been published in Advanced Functional Materials. Unlike current imaging methods such as CT or MRI scans, which can show the presence of a tumour but lack the ability to provide specific molecular signatures, SPECTRA offers a distinct advantage. It can not only detect cancer cells but also differentiate between those that are likely to metastasize and those that are not. This is achieved through a combination of Raman spectroscopy, which utilises the scattering of laser light to provide detailed information about molecular vibrations, and DNA origami, which involves folding DNA into specific shapes akin to the Japanese art of paper-folding.

See also  New Hope for Atherosclerosis Diagnosis and Therapy

In their experiments, the team used the folded DNA as a scaffold to create precisely arranged plasmonic nanoparticles, Raman reporters (molecules that produce a strong signal when analysed using Raman spectroscopy), and cancer-targeting DNA sequences. These multifunctional nanoprobes were then tested on cancer cells. The researchers discovered that SPECTRA effectively and consistently bound to metastatic prostate cancer DU145 cells, distinguishing them from non-metastatic cells.

Additionally, the researchers selected a Raman reporter that generates an active and distinct signal, clearly standing out against the background of normal tissue. This innovation aids clinicians in more precisely locating disease. “It’s a smart design that gives high enhancement to the Raman signal, and it’s uniform,” explained Swati Tanwar, a postdoctoral fellow in mechanical engineering. “It can distinguish aggressive cancer cells from non-aggressive based on the intensity of the signal. In a tumour, if 10% of the cells are aggressive and 90% are non-aggressive, the 10% will light up and give a very high signal.”

Tanwar further elaborated on the meticulous arrangement of the DNA origami scaffold. Each strand of DNA in the scaffold has a unique sequence and occupies a specific position in the folded origami nanostructure. This precise organisation is crucial for creating the multifunctional SPECTRA nanoprobes.

“Raman spectroscopy is a molecular fingerprinting tool,” said Lintong Wu, a Ph.D. student in mechanical engineering. “Molecules can look similar at a distance, but using Raman spectroscopy they show different peaks and signals throughout the entire spectrum.” This capability allows SPECTRA to provide detailed and specific molecular information that other imaging methods cannot match.

The introduction of SPECTRA marks a significant leap forward in cancer imaging technology. Its ability to provide detailed molecular information and distinguish between aggressive and non-aggressive cancer cells could greatly enhance early detection and treatment strategies. As this technology advances and becomes more widely adopted, it holds the promise of improving outcomes for countless cancer patients by enabling more targeted and effective treatment plans.

See also  New nanoparticles boost immune system in mice to fight melanoma and breast cancer

Author:

Alex Carter

Content Producer and Writer

Nano Magazine 

Image

Source link

cancer Enhance Imaging Innovative nanoprobes optical precision
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

First-ever real-time visualization of nanoscale domain response may boost ultrasound imaging technology

April 30, 2025

Microscopy method breaks barriers in nanoscale chemical imaging

April 24, 2025

In What Ways Can Nanosensors Be Used to Detect Cancer?

April 22, 2025

AI combined with nanotech can detect oral cancer earlier

April 21, 2025

Engineers develop a way to mass manufacture nanoparticles that deliver cancer drugs directly to tumors

April 15, 2025

Comments are closed.

Top Articles
News

Researchers create orientation-independent magnetic field-sensing nanotube spin qubits

News

Nanowires in Cancer: Diagnostics and Therapeutic Innovations

News

Optimizing Particle Size Analysis for Light-Absorbing Colloidal Suspensions with the BeNano 180 Zeta Pro

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New nano-thin superbug-slaying material could revolutionize wound healing

September 14, 2023

Image-processing method enhances visualization of electron microscope images in rubber materials

December 1, 2024

Organic electronics lead to new ways to sense light

January 28, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel