Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Image-processing method enhances visualization of electron microscope images in rubber materials
News

Image-processing method enhances visualization of electron microscope images in rubber materials

December 1, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Image-processing method enhances visualization of electron microscope images in rubber materials
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: University of Tsukuba

Researchers at University of Tsukuba have developed a new imaging method that clearly visualizes nanoscale structures within rubber materials. The study is published in the journal ACS Applied Nano Materials.

Conventional electron microscopy often produces noisy images that obscure rubber’s internal contours. The proposed method successfully captures the mesh-like molecular network structure and quantifies factors involved in the internal structure.

Rubber possesses unique properties such as softness and stretchability, which are exploited in applications ranging from tires to medical materials. Molecular bonding forms a complex network structure that considerably influences the physical properties of rubber. However, the precise internal structure of rubber is not easily discerned in conventional electron microscope images because the outlines are obscured by noise.

To address this issue, researchers have developed a new image-processing method for electron microscope images that selectively enhances the visibility of areas in which rubber molecules aggregate into network-like structures.

By integrating knowledge of the rubber material with advanced mathematical techniques, the new method visually clarifies the internal network structure of rubber at the nanoscale, even in very noisy electron microscope images with unclear outlines.

The network region, which must be identified manually by conventional methods, can be calculated automatically by the new method, thereby eliminating the need for arbitrariness and enabling simultaneous analysis of multiple samples.

The researchers measured the network length of each sample using the new method. The processed data were highly correlated with the experimental values, thus confirming the new method’s reliability.

The findings of this research are expected to drive the development of safe, economical, and high-performance rubber materials, contributing to societal benefits such as resource and energy conservation.

See also  Physicists take a step closer to controlling single-molecule chemical reactions

Provided by
University of Tsukuba



Source link

electron enhances Imageprocessing images materials method microscope rubber visualization
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Comments are closed.

Top Articles
News

New design approach scales up opportunities for single-molecule analytics

News

Researchers develop plasmonic nanotweezers to more rapidly trap potentially cancerous nanosized particles

A Photonic Device that Could Change Physics and Lasers Forever

Editors Picks

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Unveiling the future of nanostructures with soft matter magic

April 4, 2024

Nano-based cancer therapies may be less effective in younger patients, finds study

September 19, 2023

New Flexible Device Unlocks Long-Term Brain Monitoring Possibilities

February 5, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel