Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»How to grow inorganic functional nanomaterials—quantum dots—in the nucleus of live cells
News

How to grow inorganic functional nanomaterials—quantum dots—in the nucleus of live cells

April 10, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
How to grow inorganic functional nanomaterials—quantum dots—in the nucleus of live cells
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
From left to right, the fluorescence images of the QDs, the fluorescence images of the nucleus staining dye and the merge of the two. This figure shows that with the treatment of GSH, the fluorescent QDs were grown in the nucleus of live cells. Se’ stands for Na2SeO3; Cd’ stands for CdCl2. Credit: Science China Press

National Science Review recently published research on the synthesis of quantum dots (QDs) in the nucleus of live cells by Dr. Hu Yusi, Associate Professor Wang Zhi-Gang, and Professor Pang Dai-Wen from Nankai University.

During the study of QDs synthesis in mammalian cells, it was found that the treatment with glutathione (GSH) enhanced the cell’s reducing capacity. The generated QDs were not uniformly distributed within the cell but concentrated in a specific area.

Through a series of experiments, it was confirmed that this area is indeed the cell nucleus. Dr. Hu said, “This is truly amazing, almost unbelievable.”

Dr. Hu and his mentor Professor Pang attempted to elucidate the molecular mechanism of quantum dot synthesis in the cell nucleus. It was found that GSH plays a significant role. There is a GSH transport protein, Bcl-2, on the nucleus, which transports GSH into the nucleus in large quantities, enhancing the reducing ability within the nucleus, promoting the generation of Se precursors.

At the same time, GSH can also expose thiol groups on proteins, creating conditions for the generation of Cd precursors. The combination of these factors ultimately enables the abundant synthesis of quantum dots in the cell nucleus.

Professor Pang stated, “This is an exciting result; this work achieves the precise synthesis of QDs in live cells at the subcellular level. Research in the field of synthetic biology mostly focuses on live cell synthesis of organic molecules through reverse genetics.

“Rarely do we see the live cell synthesis of inorganic functional materials. Our study doesn’t involve complex genetic modifications; it achieves the target synthesis of inorganic fluorescent nanomaterials in cellular organelles simply by regulating the content and distribution of GSH within the cell. This addresses the deficiency in synthetic biology for the synthesis of inorganic materials.”

See also  New micromaterial releases nanoparticles that selectively destroy cancer cells

While the synthesis of organic materials in cells remains predominant in the field of biosynthesis, this research undoubtedly paves the way for the synthesis of inorganic materials in synthetic biology.

Professor Pang said, “Each of our advancements is a new starting point. We firmly believe that in the near future, we can use cell synthesis to produce nanodrugs, or even nanorobots in specified organelles. Moreover, we can transform cells into super cells, enabling them to do unimaginable things.”

Provided by
Science China Press



Source link

cells dotsin functional grow inorganic live nanomaterialsquantum nucleus
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Solid electrolyte composed of nanoparticles shows promise for all-solid-state batteries

News

High-performance quantum dot photosensor needs no external power source

Research

Advancing Heat Management in Nanodevices Through Silicon Dioxide Coatings

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Twisted molecular wires exhibit high single-molecule conductance

August 28, 2024

The corners where atoms meet may provide a path to new materials for extreme conditions

October 26, 2024

Biomimetic crystallization for long-pursued –COOH-functionalized gold nanocluster with near-infrared phosphorescence

December 5, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel