Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»How Tiny Polymers Are Outsmarting Neurodegenerative Diseases
News

How Tiny Polymers Are Outsmarting Neurodegenerative Diseases

February 18, 2024No Comments5 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
How Tiny Polymers Are Outsmarting Neurodegenerative Diseases
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Researchers have found a new way to boost the body’s defense against neurodegenerative diseases by preventing the degradation of Nrf2, potentially slowing the progression of diseases such as Alzheimer’s and Parkinson’s. Credit: SciTechDaily.com

A groundbreaking study introduces a new method of targeting ‘undruggable’ proteins to fight neurodegenerative diseases by enhancing cellular antioxidant defenses, offering new hope for treatment advancements.

Researchers led by Northwestern University and the University of Wisconsin-Madison have introduced a pioneering approach aimed at combating neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Amyotrophic lateral sclerosis (ALS).

In a new study, researchers discovered a new way to enhance the body’s antioxidant response, which is crucial for cellular protection against the oxidative stress implicated in many neurodegenerative diseases.

The study was published on February 16 in the journal Advanced Materials.

Nathan Gianneschi, the Jacob & Rosaline Cohn Professor of Chemistry at Northwestern’s Weinberg College of Arts and Sciences and member of the International Institute for Nanotechnology, led the work with Jeffrey A. Johnson and Delinda A. Johnson of the University of Wisconsin-Madison School of Pharmacy.

Artificial Proteins Made Using Precision Polymers

Proteins are nature’s polymers, governing biological processes at every level. A new study presents artificial proteins made using modern, precision polymers to intervene and alter natural processes towards a new way of developing therapeutics. Credit: Northwestern University/University of Wisconsin

Targeting Neurodegenerative Diseases

Alzheimer’s disease, characterized by the accumulation of beta-amyloid plaques and tau protein tangles; Parkinson’s disease, known for its loss of dopaminergic neurons and presence of Lewy bodies; and ALS, involving the degeneration of motor neurons, all share a common thread of oxidative stress contributing to disease pathology.

See also  Cholesterol-modified oligonucleotides show promise for treating brain diseases

The study focuses on disrupting the Keap1/Nrf2 protein-protein interaction (PPI), which plays a role in the body’s antioxidant response. By preventing the degradation of Nrf2 through selective inhibition of its interaction with Keap1, the research holds promise for mitigating the cellular damage that underlies these debilitating conditions.

“We established Nrf2 as a principal target for the treatment of neurodegenerative diseases over the past two decades, but this novel approach for activating the pathway holds great promise to develop disease-modifying therapies,” Jeffrey Johnson said.

Limitations of Current Therapeutics

The research team embarked on addressing one of the most challenging aspects of neurodegenerative disease treatment: the precise targeting of PPIs within the cell. Traditional methods, including small molecule inhibitors and peptide-based therapies, have fallen short due to lack of specificity, stability and cellular uptake.

The study introduces an innovative solution: protein-like polymers, or PLPs, are high-density brush macromolecular architectures synthesized via the ring-opening metathesis polymerization (ROMP) of norbornenyl-peptide-based monomers. These globular, proteomimetic structures display bioactive peptide side chains that can penetrate cell membranes, exhibit remarkable stability and resist proteolysis.

This targeted approach to inhibit the Keap1/Nrf2 PPI represents a significant leap forward. By preventing Keap1 from marking Nrf2 for degradation, Nrf2 accumulates in the nucleus, activating the Antioxidant Response Element (ARE) and driving the expression of detoxifying and antioxidant genes. This mechanism effectively enhances the cellular antioxidant response, providing a potent therapeutic strategy against the oxidative stress implicated in many neurodegenerative diseases.

The Innovation Behind Protein-Like Polymers

PLPs, developed by Gianneschi’s team, could represent a significant breakthrough in halting or reversing damage offering hope for improved treatments and outcomes.

See also  Unlocking Graphene’s Potential: Oxygen-Free Methods Revolutionize Production

Focusing on the challenge of activating processes crucial for the body’s antioxidant response, the team’s research offers a novel solution. The team provides a robust, selective method enabling enhanced cellular protection and offering a promising therapeutic strategy for a range of diseases including neurodegenerative conditions.

“Through modern polymer chemistry, we can begin to think about mimicking complex proteins,” Gianneschi said. “The promise lies in the development of a new modality for the design of therapeutics. This could be a way to address diseases like Alzheimer’s and Parkinson’s among others where traditional approaches have struggled.”

This approach not only represents a significant advance in targeting transcription factors and disordered proteins, but also showcases the PLP technology’s versatility and potential to revolutionize the development of therapeutics. The technology’s modularity and efficacy in inhibiting the Keap1/Nrf2 interaction underscore its potential for impact as a therapeutic, but also as a tool for studying the biochemistry of these processes.

A Collaboration of Minds

Highlighting the study’s collaborative nature, Gianneschi’s team worked closely with experts across disciplines, illustrating the rich potential of combining materials science with cellular biology to tackle complex medical challenges.

“We were contacted by Professor Gianneschi and colleagues proposing to use this novel PLP technology in neurodegenerative diseases due to our previous work on Nrf2 in models of Alzheimer’s disease, Parkinson’s disease, ALS and Huntington’s disease,” Jeffrey Johnson said. “We had never heard of this approach for Nrf2 activation and immediately agreed to initiate this collaborative effort that led to the generation of great data and this publication.”

This partnership underscores the importance of interdisciplinary research in developing new therapeutic modalities.

See also  Mechanically interlocked 2D chainmail unlocks smart polymers with shape-shifting capabilities

Impact

With the development of this innovative technology, Gianneschi, his colleagues at the International Institute for Nanotechnology and the Johnson Lab at the University of Wisconsin-Madison, are not just advancing the field of medicinal chemistry, they are opening new pathways to combat some of the most challenging and devastating neurodegenerative diseases faced by society today. As this research progresses towards clinical application, it may soon offer new hope to those suffering from diseases of oxidative stress such as Alzheimer’s and Parkinson’s diseases.

“By controlling materials at the scale of single nanometers, we’re opening new possibilities in the fight against diseases that are more prevalent than ever, yet remain untreatable,” Gianneschi said. “This study is just the beginning. We’re excited about the possibilities as we continue to explore and expand the development of macromolecular drugs, capable of mimicking some of the aspects of proteins using our PLP platform.”

Reference: “Inhibiting the Keap1/Nrf2 Protein-Protein Interaction with Protein-Like Polymers” by Kendal P. Carrow, Haylee L. Hamilton, Madeline P. Hopps, Yang Li, Baofu Qiao, N. Connor Payne, Matthew P. Thompson, Xiaoyu Zhang, Assa Magassa, Mara Fattah, Shivangi Agarwal, Michael P. Vincent, Marina Buyanova, Paul A. Bertin, Ralph Mazitschek, Monica Olvera de la Cruz, Delinda A. Johnson, Jeffrey A. Johnson and Nathan C. Gianneschi, 19 January 2024, Advanced Materials.
DOI: 10.1002/adma.202311467


Source link

diseases neurodegenerative Outsmarting Polymers Tiny
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
News

Building Structures Atom by Atom Using Electron Microscopy

News

Green Electrospinning: Making Electrospinning Environmentally Friendly

News

Atomic force microscopy reveals microtubule defects at submolecular resolution

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Team successfully synthesizes atomically precise metal nanoclusters

March 11, 2024

Experiments demonstrate precise delivery of nanoparticles to lung via caveolae pumping system

November 10, 2024

3D printing technology achieves precision light control for structural coloration

August 16, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel