Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»High-sensitivity terahertz detection by 2D plasmons in transistors
News

High-sensitivity terahertz detection by 2D plasmons in transistors

January 5, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
High-sensitivity terahertz detection by 2D plasmons in transistors
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
A bird’s-eye view of the device structure and electron micrographs of the device surface. G1: gate 1 electrode, G2: gate 2 electrode, D: drain electrode, and S: source electrode. Credit: Akira Satou et al

A research group from Tohoku University and RIKEN has developed a high-speed, high-sensitivity terahertz-wave detector operating at room temperature, paving the way for advancements in the development of next generation 6G/7G technology.

Details of their breakthrough were published in the journal Nanophotonics on November 9, 2023.

The enhancement of current communications speeds will rely on terahertz (THz) waves. THz waves are electromagnetic waves within the THz range, which falls between the microwave and infrared portions of the electromagnetic spectrum, typically spanning frequencies from 300 gigahertz to 3 THz.

Still, the fast and sensitive detection of THz waves at room temperature is challenging for conventional electronic- or photonic-based semiconductor devices.

This is where two-dimensional plasmons come in. In a semiconductor field-effect transistor, there is a two-dimensional electron channel where a collective charge-density quanta, i.e., two-dimensional plasmons, exist. These plasmons are excited states of electrons exhibiting fluid-like behaviors. Their nonlinear rectification effects, originating from these fluid-like behaviors, and their rapid response (not constrained by electron transit time) make them a promising means to detect THz waves at room temperature.

High-sensitivity terahertz detection by 2D plasmons in transistors
Schematic view of the 3D rectification effect in the device. Credit: Akira Satou et al

“We discovered a 3D plasmonic rectification effect in THz wave detector,” says Akira Satou, leader of the research group and associate professor at Tohoku University’s Research Institute for Electrical Communication (RIEC). “The detector was based on an indium-phosphide high-electron mobility transistor and it enabled us to enhance the detection sensitivity more than one order of magnitude higher than conventional detectors based on 2D plasmons.”

The new detection method combined the traditional vertical hydrodynamic nonlinear rectification effect of 2D plasmons with the addition of a vertical diode-current nonlinearity.

See also  Pioneering beyond-silicon technology via residue-free field effect transistors

It also dramatically resolved the waveform distortion caused by multiple reflections of high-speed modulated signals—a critical issue in conventional detectors based on 2D plasmons.

Leading the group alongside Satou was Specially Appointed Professor Tetsuya Suemitsu from Tohoku University’s New Industry Creation Hatchery Center and Hiroaki Minamide from RIKEN Center for Advanced Photonics.

“Our new detection mechanism overcomes most of the bottlenecks in conventional terahertz-wave detectors,” adds Satou. “Looking ahead, we hope to build on our achievement by improving the device performance.”

Provided by
Tohoku University



Source link

detection Highsensitivity plasmons terahertz transistors
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

The Future of Needle-Free Immunization

May 28, 2025

Comments are closed.

Top Articles
News

Engineering bacteria to biosynthesize intricate protein complexes

News

Scientists create the thinnest lens on Earth, enabled by excitons

News

Light-based microcapillary monitoring sparks innovation in manufacturing and biotechnology

Editors Picks

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

New contact lenses allow wearers to see in the near-infrared

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

The future of health care wearables

July 13, 2024

Mechanically interlocked 2D chainmail unlocks smart polymers with shape-shifting capabilities

April 25, 2025

Modular protein adapter technology enables exosome-based precision drug delivery

May 6, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel