Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»High-performance SERS substrate proposed based on 2H-TaS2 and single-atom-layer gold clusters
News

High-performance SERS substrate proposed based on 2H-TaS2 and single-atom-layer gold clusters

October 17, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
High-performance SERS substrate proposed based on 2H-TaS2 and single-atom-layer gold clusters
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Revealing the SERS Enhancement Principle of Au-2H-TaS2 Based on the Coupling Effect of Nearest-Neighbor Electron Orbits. Credit: The Journal of Physical Chemistry Letters (2023). DOI: 10.1021/acs.jpclett.3c02225

Recently, a research team led by Professor Yang Liangbao from Institute of Health and Medical Technology, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS) proposed an electromagnetic field enhancement mechanism based on the near neighbor electron orbit coupling effect, explaining the mechanism of two-dimensional (2D) layered material Au-2H-TaS2 used for surface enhanced Raman scattering (SERS) enhancement.

The results were published in Journal of Physical Chemistry Letters.

2D materials are a hot topic in the field of analytical chemistry due to their potential as ideal metal-free surface-enhanced Raman spectroscopy (SERS) substrates. However, compared to precious metals, 2D materials have a relatively low enhancement factor (usually below 103) due to their mainly chemical enhancement mechanism.

Therefore, further research is needed on the mixed metal nanoparticle 2D material or chemically doped 2D material system and its SERS enhancement mechanism in order to achieve high SERS performance.

In this study, the team utilized single atom Au clusters to intercalate 2H-TaS2, achieving a SERS enhancement effect of two orders of magnitude relative to the parent 2H-TaS2.

In order to accurately elucidate the SERS enhancement mechanism of Au-2H-TaS2, a single atomic layer Au cluster intercalation bilayer 2H-TaS2 model was established, and an innovative electromagnetic field enhancement mechanism based on the coupling effect of neighboring electron orbitals was proposed.

Through experimental analysis and theoretical calculations, it has been shown that the d-orbital electrons on the Au surface are coupled with neighboring 2H-TaS2, increasing the local electron density, resulting in a strong local electromagnetic field.

This work provides new insights for SERS enhancement of nonprecious metal compounds and guides the development of new SERS substrates, according to the team.

See also  Wafer-scale patterning of gold nanoparticle arrays enables enhanced biosensing

Provided by
Chinese Academy of Sciences



Source link

2HTaS2 based clusters gold Highperformance proposed SERS singleatomlayer substrate
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Comments are closed.

Top Articles
News

Tiny dancers: Scientists synchronize bacterial motion

News

Nitrogen and argon plasma boosts performance of carbon-based supercapacitor electrodes

News

Flexible nanoimprint lithography enables efficient fabrication of biomimetic microstructures

Editors Picks

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Using light to precisely control single-molecule devices

March 12, 2024

Nanotechnology in China: Market Report

February 25, 2025

Data Analytics in the Semiconductor Manufacturing Chain

November 22, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel