Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Harnessing Bacterial Motors for Nanomachines
News

Harnessing Bacterial Motors for Nanomachines

November 28, 2023No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Harnessing Bacterial Motors for Nanomachines
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

A collaborative research effort spearheaded by Nagoya University has uncovered crucial details about the FliG molecule in bacteria’s flagellar motors, offering insights for creating efficient, controllable nanomachines, potentially revolutionizing medical technology and artificial life design.

A research group has made new insights into how locomotion occurs in bacteria. The group identified the FliG molecule in the flagellar layer, the ‘motor’ of bacteria, and revealed its role in the organism. These findings suggest ways in which future engineers could build nanomachines with full control over their movements.

The researchers, who were led by Professor Emeritus Michio Homma and Professor Seiji Kojima of the Graduate School of Science at Nagoya University, in collaboration with Osaka University and Nagahama Institute of Bio-Science and Technology, published the study in iScience.

Flagellar Motors: Inspiration for Nanomachines

As nanomachines become smaller, researchers are taking inspiration from microscopic organisms for ways to make them move and operate. In particular, the flagellar motor can rotate clockwise and counterclockwise at a speed of 20,000 rpm. If scaled up, it would be comparable to a Formula One engine with an energy conversion efficiency of almost 100% and the capacity to change its rotation direction instantly at high speeds. Should engineers be able to develop a device like a flagellar motor, it would radically increase the maneuverability and efficiency of nanomachines.

Understanding Bacterial Movement

The flagellar motors in bacteria have a rotor and a stationary component that surrounds it, known as the stator. If the flagellum was a part of a car, the stator would be the engine. The rotation of the stator is transmitted to the rotor like a gear, causing the rotor to rotate. Depending on the rotation, the bacterium moves forward or backward, like an automatic car with reverse and drive settings. A protein complex called the C ring controls this motion.


Researchers clarified the physical properties of the FliG protein in the “bacterial motor”. A simulated movement of the FliG is shown. Credit: Atsushi Hijikata, Yohei Miyanoiri, Osaka University

Inside the C ring, the FliG molecule acts like the clutch, switching from forward to backward movement. Like a car, the parts must work together. The slightest change can affect the motor. In the flagellar motor, these tiny changes are mutations. Homma’s group studied the G215A mutant in FliG, which causes clockwise permanent rotation of the motor, and compared it with the non-mutated form that can move in both forward and backward directions.

The Role of FliG and Water Molecules

When they tested the G215A mutant of the marine organism Vibrio alginolyticus, they found that this clockwise motion was because of changes in FliG and the interaction of water molecules around the protein. They also saw these changes in the normal form when it rotated clockwise. However, these differed from those seen when it rotated anticlockwise.

“The flagellar motor rotates in both directions: clockwise to move backward and counterclockwise to move forward,” said Homma. “In this study, we found that the structure of FliG and the interaction of water molecules around it are different when the motor moves clockwise and counterclockwise. This difference allows bacteria to instantly switch between forward and backward movements in response to environmental changes.”

“The clarification of the physical properties of the FliG protein in motors is a significant breakthrough in our understanding of the molecular mechanism that switches the direction of rotation of motors, suggesting ways to create compact motors with higher energy conversion efficiency,” said Homma. “Using these findings, it will be possible to design artificial nanomachines that can freely control their rotation, which is expected to be applied to various future fields such as medicine and the design of artificial life.”

Reference: “Changes in the hydrophobic network of the FliGMC domain induce rotational switching of the flagellar motor” by Tatsuro Nishikino, Atsushi Hijikata, Seiji Kojima, Tsuyoshi Shirai, Masatsune Kainosho, Michio Homma and Yohei Miyanoiri, 11 July 2023, iScience.
DOI: 10.1016/j.isci.2023.107320


Source link

See also  Mechanical engineer figures out way to enhance sensitivity of nanopores for early detection of diseases
bacterial Harnessing motors nanomachines
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
News

Team uses gold nanowires to develop wearable sensor that measures two bio-signals

News

Researchers develop novel selenium nanoparticles for managing postmenopausal osteoporosis

Medical

An evaluation of the main nanotechnology approaches to improve the therapeutic potential of polyphenols against cancer

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scientists Discover Hidden Neural Network-Like Abilities of Self-Assembling Molecules

February 10, 2024

Could Nanotechnology Be Used to Improve Brain Implants?

October 27, 2023

New molecular compound designed with technological applications at the nanoscale

April 12, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel