Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Gate induced room-temperature magnetic phase transition realized in van der Waals ferromagnet nanoflakes
News

Gate induced room-temperature magnetic phase transition realized in van der Waals ferromagnet nanoflakes

November 16, 2023No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Gate induced room-temperature magnetic phase transition realized in van der Waals ferromagnet nanoflakes
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
An illustration of device. Credit: Zheng Guolin

By intercalating protons into van der Waals ferromagnet Cr1.2Te2 nanoflakes, a group of researchers successfully induced a room-temperature magnetic phase transition from ferromagnetism to antiferromagnetism.

The collaboration involved professors from the High Magnetic Field Laboratory at Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei University of Technology, South China University of Technology and University of Science and Technology of China.

The research was recently published on Physical Review Letters.

Controlling the direction of magnetization in two-dimensional ferromagnets is vital for developing super-compact, non-volatile spintronic devices. In traditional spintronic devices, the direction of magnetization can usually be switched by a local magnetic field induced by current or by spin transfer torque. However, the high carrier density in van der Waals itinerant ferromagnets is difficult to tune, which has hindered progress in this area.

In this research, the researchers fabricated high-quality single crystals and found that Cr1.2Te2 nanoflakes exfoliated from these crystals exhibited square-shape hysteresis loops at room temperature, confirming their high practical value.

Further study found that at T=200 K, the magnetism in a 40 nm thick Cr1.2Te2 nanoflake exhibited a non-monotonic evolution against the gate voltage. Specifically, with the anomalous Hall resistivity first increasing and then decreasing.

When the electron doping concentration ne=3.8×1021cm-3 at Vg=-14 V, the anomalous Hall resistivity disappeared, revealing a possible magnetic phase transition.

Theoretical analysis showed that the electron-type doping can be achieved in proton-intercalated Cr1.2Te2, and a magnetic phase transition from FM to AFM can be realized with a critical doping concentration of around 1021cm-3, which is consistent with their experimental observations.

See also  Researchers use nanotechnology to boost benefits of anthocyanin

This FM-to-AFM phase transition in a van der Waals magnet at room temperature could lead to improved spintronic devices, according to the team.

Provided by
Chinese Academy of Sciences



Source link

der ferromagnet Gate induced magnetic nanoflakes phase realized roomtemperature Transition van Waals
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
News

Team observes third-order exceptional line in nitrogen-vacancy spin system

News

Next-generation mRNA vaccine delivery system uses biodegradable polymers

News

The Role of Nanosponges in Oil Spill Cleanup

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

“Laboratory testicles” could solve male infertility mysteries

February 21, 2024

Who Discovered Nanoparticles?

May 8, 2024

Gold nanoclusters offer sustainable solution for wastewater polluted by dyes used in many industries

March 29, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel