Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Game-Changing Electronic Sensor the Size of a Single Molecule
News

Game-Changing Electronic Sensor the Size of a Single Molecule

October 4, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Game-Changing Electronic Sensor the Size of a Single Molecule
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

Researchers from multiple Australian universities have developed an incredibly miniaturized piezoresistor, 500,000 times smaller than a human hair. This sensitive electronic component transforms force into electrical signals, holding potential for innovative applications in biosensors and health monitoring.

Australian researchers have developed a molecular-sized, more efficient version of a widely used electronic sensor, in a breakthrough that could bring widespread benefits.

Piezoresistors are commonly used to detect vibrations in electronics and automobiles, such as in smartphones for counting steps, and for airbag deployment in cars. They are also used in medical devices such as implantable pressure sensors, as well as in aviation and space travel.

Breakthrough in Piezoresistor Technology

In a nationwide initiative, researchers led by Dr. Nadim Darwish from Curtin University, Professor Jeffrey Reimers from the University of Technology Sydney, Associate Professor Daniel Kosov from James Cook University, and Dr. Thomas Fallon from the University of Newcastle, have developed a piezoresistor that is about 500,000 times smaller than the width of a human hair.

Dr. Darwish said they had developed a more sensitive, miniaturized type of this key electronic component, which transforms force or pressure to an electrical signal and is used in many everyday applications.

Potential Applications and Features

“Because of its size and chemical nature, this new type of piezoresistor will open up a whole new realm of opportunities for chemical and biosensors, human-machine interfaces, and health monitoring devices,” Dr. Darwish said.

“As they are molecular-based, our new sensors can be used to detect other chemicals or biomolecules like proteins and enzymes, which could be game-changing for detecting diseases.”

Scientific Basis Behind the Development

Dr. Fallon said the new piezoresistor was made from a single bullvalene molecule that when mechanically strained reacts to form a new molecule of different shape, altering electricity flow by changing resistance.

“The different chemical forms are known as isomers, and this is the first time that reactions between them have been used to develop piezoresistors,” Dr. Fallon said.

“We have been able to model the complex series of reactions that take place, understanding how single molecules can react and transform in real-time.”

Implications for Molecular Electronics

Professor Reimers said the significance of this was the ability to electrically detect the change in the shape of a reacting molecule, back and forth, at about once every 1 millisecond.

“Detecting molecular shapes from their electrical conductance is a whole new concept of chemical sensing,” Professor Reimers said.

Associate Professor Kosov said understanding the relationship between molecular shape and conductivity will allow basic properties of junctions between molecules and attached metallic conductors to be determined.

“This new capability is critical to the future development of all molecular electronics devices,” Associate Professor Kosov said.

Reference: “Controlling piezoresistance in single molecules through the isomerisation of bullvalenes” by Jeffrey R. Reimers, Tiexin Li, André P. Birvé, Likun Yang, Albert C. Aragonès, Thomas Fallon, Daniel S. Kosov and Nadim Darwish, 3 October 2023, Nature Communications.
DOI: 10.1038/s41467-023-41674-z


Source link

See also  How Does Stacking Graphene Influence Its Electronic Properties?
electronic GameChanging Molecule Sensor Single Size
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Comments are closed.

Top Articles
Medical

Harnessing the extraordinary capabilities of bio-nanoantennae to target and kill brain tumors

News

Scientists discover way to ‘grow’ sub-nanometer sized transistors

News

High-Strength Alloys: The Nanotechnology Casting Advantage

Editors Picks

Deep-trench 3D printing enables next-gen RF devices with unprecedented precision

May 12, 2025

Large-aperture MEMS modulator paves way for high-speed, energy-efficient optical communication systems

May 11, 2025

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

New microchip captures exosomes for faster, more sensitive lung cancer detection from a blood draw

October 14, 2024

How stressed are you? Nanoparticles pave the way for home stress testing

September 9, 2024

New tech could give individuals increased control over their own exposure to harmful gases

June 15, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel