Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»From Mythic Ocean Waves to Micro-Manufacturing Marvels
News

From Mythic Ocean Waves to Micro-Manufacturing Marvels

October 25, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
From Mythic Ocean Waves to Micro-Manufacturing Marvels
Share
Facebook Twitter LinkedIn Pinterest Telegram Email

MD simulation: The silver balls are solid particles and the blue balls are the fluid (liquid and vapour) particles. There is a liquid film sitting on a solid substrate, and there are waves at the surface. Credit: Jingbang Liu, University of Warwick

Scientists have adapted the principles of large, unexpected oceanic rogue waves to a nanoscale, revealing potential applications in nano-manufacturing and medical insights, supported by mathematical models inspired by quantum physics.

Researchers have shown how the principles of rogue waves – huge 30-meter waves that arise unexpectedly in the ocean – can be applied on a nanoscale, with dozens of applications from medicine to manufacturing.

Long considered to be a myth, rogue waves strike from comparably calm surroundings, smashing oil rigs and ships in their path. Unlike tsunamis, rogue waves form by the chance combination of smaller waves in the ocean, creating an event that is very rare.

Nanoscale Application of Rogue Wave Principles

There has been a lot of research into rogue waves in recent years but now, for the first time, scientists are showing how this can be applied on a much smaller scale – nanometrically. A nanometer is a million times smaller than the thickness of the page of a book. This is a completely new approach to the behavior of liquids on a nanometric scale, published as a Letter in Physical Review Fluids.

The holes and bumps caused by rogue waves can be manipulated to spontaneously produce patterns and structures for use in nano-manufacturing (manufacturing on a scale one-billionth of a meter). For example, patterns formed that rupture liquid films can be used to build microelectronic circuits, which could be used in the production of low-cost components of solar cells. Furthermore, the behavior of thin liquid layers could help to explain why millions of people worldwide suffer from dry eye. This occurs when the tear film covering the eye ruptures.

Uncovering the Behavior of Nanoscopic Liquid Layers

Through direct simulations of molecules and new mathematical models, the study led by the University of Warwick’s Mathematics Institute discovered how nanoscopic layers of liquid behave in counterintuitive ways. While a layer of spilled coffee on a table may sit apparently motionless, at the nanoscale the chaotic motion of molecules creates random waves on a liquid’s surface. A rare event occurs when these waves conspire to create a large ‘rogue nanowave’ that bursts through the layer and creates a hole. The new theory explains both how and when this hole is formed, giving new insight into a previously unpredictable effect, by taking their large oceanic cousins as a mathematical blueprint.

The team of researchers is excited about the potential of this research in different industries; the applications are far-reaching.

Professor James Sprittles, Mathematics Institute, University of Warwick, said: “We were excited to discover that mathematical models originally developed for quantum physics and recently applied to predict rogue ocean waves are crucial for predicting the stability of nanoscopic layers of liquid.

“In the future, we hope that the theory can be exploited to enable an array of nano-technologies, where manipulating when and how layers rupture is crucial. There might also be applications in related areas, such as the behavior of emulsions, e.g. in foods or paints, where the stability of thin liquid films dictates their shelf-life.”

Reference: “Rogue nanowaves: A route to film rupture” by James E. Sprittles, Jingbang Liu, Duncan A. Lockerby and Tobias Grafke, 11 September 2023, Physical Review Fluids.
DOI: 10.1103/PhysRevFluids.8.L092001


Source link

See also  Colloidal Silicon Dioxide - Properties and Applications
Marvels MicroManufacturing Mythic Ocean Waves
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Comments are closed.

Top Articles
News

Is graphene the best heat conductor? Researchers investigate with four-phonon scattering

News

Tracking the dynamics of biomolecules with optofluidic antennas

News

Tuning Properties In Carbon Nanotubes Through Chirality

Editors Picks

Dual-stage monitoring technique for nanocomposites can streamline manufacturing and property tracking

May 11, 2025

Probing the molecular mechanisms of metastasis

May 10, 2025

AI-powered electronic nose detects diverse scents for health care and environmental applications

May 10, 2025

Microbubble dynamics in boiling water enable precision fluid manipulation

May 9, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Making a mark with novel nano-scale laser writing

April 3, 2024

Hidden Costs in Currency Transfers: How Banks and Brokers Are Charging You More

May 31, 2024

Researchers confirm thermal insights for tiny circuits

November 12, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel