Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025

Dynamic visualizations expose how domain walls shift in ferroelectrics

May 23, 2025

Special contact lenses let you see infrared light – even in the dark

May 22, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Fluorous lipopeptides act as highly effective antibiotics for multidrug-resistant pathogens
News

Fluorous lipopeptides act as highly effective antibiotics for multidrug-resistant pathogens

April 17, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Fluorous lipopeptides act as highly effective antibiotics for multidrug-resistant pathogens
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Credit: Angewandte Chemie International Edition (2024). DOI: 10.1002/anie.202403140

Multidrug-resistant bacterial infections that cannot be treated by any known antibiotics pose a serious global threat. Publishing in the journal Angewandte Chemie International Edition, a Chinese research team has now introduced a method for the development of novel antibiotics to fight resistant pathogens. The drugs are based on protein building blocks with fluorous lipid chains.

Antibiotics are often prescribed far too readily. In many countries they are distributed without prescriptions and administered in factory farming: prophylactically to prevent infections and enhance performance. As a result, resistance is on the rise—increasingly against reserve antibiotics as well. The development of innovative alternatives is essential.

It is possible to learn some lessons from the microbes themselves. Lipoproteins, small protein molecules with fatty acid chains, are widely used by bacteria in their battles against microbial competitors. A number of lipoproteins have already been approved for use as drugs.

The common factors among the active lipoproteins include a positive charge and an amphiphilic structure, meaning they have segments that repel fat and others that repel water. This allows them to bind to bacterial membranes and pierce through them to the interior.

The team led by Yiyun Cheng at East China Normal University in Shanghai aims to amplify this effect by replacing hydrogen atoms in the lipid chain with fluorine atoms. These make the lipid chain simultaneously water-repellant (hydrophobic) and fat-repellant (lipophobic). Their particularly low surface energy strengthens their binding to cell membranes while their lipophobicity disrupts the cohesion of the membrane.

The team synthesized a spectrum (substance library) of fluorous lipopeptides from fluorinated hydrocarbons and peptide chains. To link the two pieces, they used the amino acid cysteine, which binds them together via a disulfide bridge.

See also  Nano-based cancer therapies may be less effective in younger patients, finds study

The researchers screened the molecules by testing their activity against methicillin-resistant Staphylococcus aureus (MRSA), a widespread, highly dangerous strain of bacteria that is resistant to nearly all antibiotics. The most effective compound they found was “R6F,” a fluorous lipopeptide made of six arginine units and a lipid chain made of eight carbon and 13 fluorine atoms. To increase biocompatibility, the R6F was enclosed within phospholipid nanoparticles.

In mouse models, R6F nanoparticles were shown to be very effective against sepsis and chronic wound infections by MRSA. No toxic side effects were observed.

The nanoparticles seem to attack the bacteria in several ways: they inhibit the synthesis of important cell-wall components, promoting collapse of the walls; they also pierce the cell membrane and destabilize it; disrupt the respiratory chain and metabolism; and increase oxidative stress while simultaneously disrupting the antioxidant defense system of the bacteria.

In combination, these effects kill the bacteria—other bacteria as well as MRSA. No resistance appears to develop.

These insights provide starting points for the development of highly efficient fluorous peptide drugs to treat multi-drug resistant bacteria.


Source link

Act antibiotics effective Fluorous highly lipopeptides multidrugresistant pathogens
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025

Dynamic visualizations expose how domain walls shift in ferroelectrics

May 23, 2025

Nanoscale spectroscopy detects vibrational signals from molecules in confined gaps

May 22, 2025

Controlling contaminants inside nanopores holds promise for desalination, carbon dioxide storage and porous catalysts

May 22, 2025

Modified glass fiber microstructure could illuminate blood vessel health from within

May 21, 2025

A recently realized ferroelectric topology in nanomembranes enables light field manipulation

May 21, 2025

Comments are closed.

Top Articles
News

Are Low Carbon Nanomaterials the Key to a Greener Tomorrow?

A new method for precision delivery of nanoparticles and small molecules to individual cells

Researchers use multi-phase composition and electrospinning to fabricate SiOC nanofibers

Editors Picks

Targeted nanoparticles show promise for more effective antifungal treatments

May 23, 2025

Dynamic visualizations expose how domain walls shift in ferroelectrics

May 23, 2025

Special contact lenses let you see infrared light – even in the dark

May 22, 2025

Nanoscale spectroscopy detects vibrational signals from molecules in confined gaps

May 22, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Enhancing Li-Ion Battery Performance with Carbon Nanocoatings

February 14, 2025

Harvard Scientists Control “Points of Darkness” for Remote Sensing and Covert Detection Applications

August 11, 2023

Nanoparticles demonstrate new and unexpected mechanism of coronavirus disinfection

February 11, 2025

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel