Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»First observation of how water molecules move near a metal electrode
News

First observation of how water molecules move near a metal electrode

December 26, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
First observation of how water molecules move near a metal electrode
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
A snapshot taken from the computer simulation model of the system in this study. On both sides are three layers of gold atoms representing the metal electrode with adsorbed organic molecules on the left electrode. The space between the electrodes is filled with water molecules. Credit: Institute for Basic Science

A collaborative team of experimental and computational physical chemists from South Korea and the United States has made an important discovery in the field of electrochemistry, shedding light on the movement of water molecules near metal electrodes.

This research holds profound implications for advancing next-generation batteries utilizing aqueous electrolytes.

In the nanoscale realm, chemists typically utilize laser light to illuminate molecules and measure spectroscopic properties to visualize molecules. However, studying the behavior of water molecules near metal electrodes proved challenging due to the overwhelming interference from metal atoms in the electrode itself.

Additionally, water molecules distant from the electrode surface also contribute to the response of the applied light, complicating the selective observation of molecules at the liquid-metal electrode interface.

Led by Professor Martin Zanni from the University of Wisconsin at Madison and Director CHO Minhaeng from the Center for Molecular Spectroscopy and Dynamics within the Institute for Basic Science (IBS) addressed this challenge with newly developed spectroscopic techniques coupled with computer simulations.

To minimize the interference from the metals, the authors coated the surface of the electrode with specially designed organic molecules. Then, surface-enhanced femtosecond (10-15 second) two-dimensional vibrational spectroscopy was employed to observe the changes in the movement of water molecules near the metal electrode.

First observation of how water molecules move near a metal electrode
Figure representing the hydrogen bonding interaction between water molecules and an adsorbed organic molecule. Credit: Institute for Basic Science

Depending on the magnitude and polarity of the applied voltage on the metal electrode, the researchers observed, for the first time, either deceleration or acceleration of the motion of water molecules near the electrode.

“When a positive voltage is applied to the electrode, the movement of nearby water molecules slows down. Conversely, when a negative voltage is applied, the opposite is observed both in femtosecond vibrational spectroscopy and in computer simulations,” explains Dr. Kwac.

See also  Precisely arranging nanoparticles to develop plasmonic molecules

“The results of this study provide crucial information for understanding electrochemical reactions, offering essential physical insights necessary for the research and development of aqueous electrolyte batteries in the future,” comments Director CHO Minhaeng of the IBS Center for Molecular Spectroscopy and Dynamics, a corresponding author of the study.

First observation of how water molecules move near a metal electrode
Schematic figure representing the organic molecules adsorbed on a gold surface and water molecules near the gold electrode. Credit: Institute for Basic Science

This outcome implies a close relationship between electrochemical reactions involving water on the surface of electrodes and the dynamics of interfacial water molecules. It is expected to not only advance our understanding of fundamental electrochemical processes but also pave the way for the design of more efficient and sustainable battery technologies.

This research was published in the Proceedings of the National Academy of Sciences.

Provided by
Institute for Basic Science



Source link

electrode metal molecules move observation Water
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Comments are closed.

Top Articles
Medical

New platform mimics immune interactions to boost cancer treatment

Medical

New nanoparticle-based system developed for comprehensive treatment of rheumatoid arthritis

News

Nanomaterials: An Introduction

Editors Picks

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Scaling Up the Power of Nanotechnology – Scientists Develop New Conceptual Nanomaterial With Huge Potential

November 21, 2023

Prototype sunscreen uses TiO₂ nanoparticles to cool skin while blocking UV rays

January 1, 2025

Research proposes three-phase catalytic process for assembling nanoparticles to enhance SERS sensing

December 16, 2023

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel