Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Revolutionizing Agriculture: Nanopriming for Resilient Crops

June 14, 2025

A fresh new way to produce freshwater: Sonicated carbon nanotube catalysts

June 14, 2025

SECCM Imaging of Highly Oriented Pyrolytic Graphite

June 14, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Experiments show coating rice seedling with nanoscale carbon dots from durian helps rice plants thrive in salty soil
News

Experiments show coating rice seedling with nanoscale carbon dots from durian helps rice plants thrive in salty soil

December 15, 2024No Comments2 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Durian helps rice plants thrive in salty soil
Rice seedlings sprayed with a carbon dot mixture derived from durian peels (far right) were heartier than untreated seedlings (second from left) and expressed genes that improved salt tolerance and photosynthesis without genetically modifying the plant. Credit: Adapted from ACS Nano 2024, DOI: 10.1021/acsnano.4c09001

Extreme weather and pollution have increased the salt content in some soil, making growing conditions harsh for salt-sensitive crops like rice. Now, researchers reporting in ACS Nano detail a possible solution that doesn’t require genetic modification to make rice plants thrive in these conditions. In lab experiments, they determined that coating rice seedlings with magnesium-doped carbon dots—derived from durian peels—increased the seedlings’ antioxidant activity and photosynthesis, reducing the stress caused by salty soil.

To increase stress resistance in plants, the current state-of-the-art solution is gene editing. However, gene editing technologies can be cost-prohibitive, and some people are concerned about the health effects and safety of genetically modified foods.

One potential alternative to genetic modification is coating plant leaves with nanoscale carbon dots that counteract oxidative stress by mimicking the plant’s antioxidant enzymes. So, Longwei Jiang, Jianguo Zeng and colleagues designed a carbon dot using pulverized durian peel that could neutralize reactive oxygen species (ROS) and alleviate salt stress-induced damage in rice plants.

Durian peels are inedible and account for 70 to 85% of the fruit’s weight. The peel also contains a lot of carbon, making the discarded rind a good source for biomass-derived carbon dots. The researchers doped their durian-derived carbon dots with magnesium—an element essential for plant growth—and then sprayed them on rice seedlings planted in salt-free and salty soils.

The team found that seedlings treated with their dots contained lower levels of ROS and grew taller in salty soils than untreated seedlings. Furthermore, treated seedlings had activated plant defense and photosynthesis genes that weren’t activated in untreated seedlings.

See also  Magnetic nanoparticles transport drugs deep into tumors to slow cancer growth

The researchers caution that more information is needed to better understand how exactly the dots are triggering these cellular and genetic changes; more information is also needed about the treated plants’ impact on the environment and the humans and animals that consume them. However, the study concludes that carbon dots represent a potential strategy for enhancing plant salt tolerance and provide valuable insights for their agriculture applications.

Provided by
American Chemical Society



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Revolutionizing Agriculture: Nanopriming for Resilient Crops

June 14, 2025

A fresh new way to produce freshwater: Sonicated carbon nanotube catalysts

June 14, 2025

SECCM Imaging of Highly Oriented Pyrolytic Graphite

June 14, 2025

Isotopically barcoded beads allow for mass serological analysis of up to 18,000 measurements at once

June 14, 2025

Tiny ‘heat bombs’ made from biodegradable polymers could precisely target and treat diseased cells

June 13, 2025

Nanoscale Failure Analysis with AFM

June 13, 2025

Comments are closed.

Top Articles
News

Catching steroid hormones with nanotubes

News

Revolutionizing Agriculture: Nanopriming for Resilient Crops

News

A New Type of Quantum Bit Achieved in Semiconductor Nanostructures

Editors Picks

Revolutionizing Agriculture: Nanopriming for Resilient Crops

June 14, 2025

A fresh new way to produce freshwater: Sonicated carbon nanotube catalysts

June 14, 2025

SECCM Imaging of Highly Oriented Pyrolytic Graphite

June 14, 2025

Isotopically barcoded beads allow for mass serological analysis of up to 18,000 measurements at once

June 14, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Research team reveals why water moisture affects quantum crystals

August 17, 2023

X-ray Imaging Sheds Light on Fusion Material Challenges

August 23, 2024

Macroscopic C₅₄₀ model offers new way to study sound wave propagation in topological metamaterials

November 19, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel