Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Engineers link oxygen to graphene quality and develop new techniques to reproducibly make the material at scale
News

Engineers link oxygen to graphene quality and develop new techniques to reproducibly make the material at scale

June 4, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Engineers link oxygen to graphene quality and develop new techniques to reproducibly make the material at scale
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The Hone lab at Columbia Engineering created over 100 identical graphene samples with their oxygen-free chemical vapor deposition method. Credit: Jacob Amontree & Christian Cupo, Columbia University

Graphene has been called “the wonder material of the 21st century.” Since its discovery in 2004, the material—a single layer of carbon atoms—has been touted for its host of unique properties, which include ultra-high electrical conductivity and remarkable tensile strength. It has the potential to transform electronics, energy storage, sensors, biomedical devices, and more. But graphene has had a dirty little secret: it’s dirty.

Now, engineers at Columbia University and colleagues at the University of Montreal and the National Institute of Standards and Technology are poised to clean things up with an oxygen-free chemical vapor deposition (OF-CVD) method that can create high-quality graphene samples at scale.

Their work, published May 29 in Nature, directly demonstrates how trace oxygen affects the growth rate of graphene and identifies the link between oxygen and graphene quality for the first time.

“We show that eliminating virtually all oxygen from the growth process is the key to achieving reproducible, high-quality CVD graphene synthesis,” said senior author James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering. “This is a milestone towards large-scale production of graphene.”

Graphene has historically been synthesized in one of two ways. There’s the “scotch-tape” method, in which individual layers are peeled from a bulk sample of graphite (the same material you’ll find in pencil lead) using household tape.

Such exfoliated samples can be quite clean and free from impurities that would otherwise interfere with graphene’s desirable properties. However, they tend to be too small—just a few tens of micrometers across–for industrial-scale applications and, thus, better suited for lab research.

See also  Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

To move from lab explorations to real-world applications, researchers developed a method to synthesize large-area graphene about 15 years ago. This process, known as CVD growth, passes a carbon-containing gas, such as methane, over a copper surface at a temperature high enough (about 1,000°C) that the methane breaks apart and the carbon atoms rearrange to form a single honeycomb-shaped layer of graphene.

CVD growth can be scaled up to create graphene samples that are centimeters or even meters in size. However, despite years of effort from research groups around the world, CVD-synthesized samples have suffered from problems with reproducibility and variable quality.

The issue was oxygen. In prior publications, co-authors Richard Martel and Pierre Levesque from Montreal had shown that trace amounts of oxygen can slow the growth process and even etch the graphene away. So, about six years ago, Christopher DiMarco, GSAS’19, designed and built a CVD growth system in which the amount of oxygen introduced during the deposition process could be carefully controlled.

Graphene gets cleaned up
Jacob Amontree (left) and Xingzhou Yan (right) displaying their pristine CVD graphene synthesized on ultra-flat copper/sapphire wafers. Credit: Zhiying Wang, Columbia University

Current Ph.D. students Xingzhou Yan and Jacob Amontree continued DiMarco’s work and further improved the growth system. They found that when trace oxygen was eliminated, CVD growth was much faster—and gave the same results every time. They also studied the kinetics of oxygen-free CVD graphene growth and found that a simple model could predict growth rate over a range of different parameters, including gas pressure and temperature.

The quality of the OF-CVD-grown samples proved virtually identical to that of exfoliated graphene. In collaboration with colleagues in Columbia’s physics department, their graphene displayed striking evidence for the fractional quantum Hall effect under magnetic fields, a quantum phenomenon that had previously only been observed in ultrahigh-quality, two-dimensional electrical systems.

See also  Researchers develop nanotechnology for creating wafer-scale nanoparticle monolayers in seconds

From here, the team plans to develop a method to cleanly transfer their high-quality graphene from the metal growth catalyst to other functional substrates such as silicon—the final piece of the puzzle to take full advantage of this wonder material.

“We both became fascinated by graphene and its potential as undergraduates,” Amontree and Yan said. “We conducted countless experiments and synthesized thousands of samples over the past four years of our Ph.D.s. Seeing this study finally come to fruition is a dream come true.”

Provided by
Columbia University School of Engineering and Applied Science



Source link

develop Engineers Graphene link Material oxygen quality reproducibly Scale Techniques
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025

A Solution for Soil and Crop Improvement

May 12, 2025

Low-coordination Mn single-atom nanozymes enable imaging-guided cancer therapy

May 12, 2025

Comments are closed.

Top Articles
News

High-Pressure Homogenization for Cell Disruption

Research

Precision Medicine for Cystic Fibrosis and Vision Loss

News

Scientists develop thin film phototransistor for bioinspired visual adaptation

Editors Picks

Physicists create ultra-stretchable graphene via an accordion-like rippling effect

May 14, 2025

Silver nanoparticles produced by fungus could be used to prevent and treat COVID-19

May 14, 2025

An electronic band-aid that delivers therapy directly to organs

May 13, 2025

Breathable algae offers a new path

May 13, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Making big leaps in understanding nanoscale gaps

August 28, 2023

Study finds protein reduces toxicity of graphene oxide for drug delivery

August 22, 2024

The Latest Advancements in Carbon Nanotube Fabrication

January 31, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel