Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Electrospinning and electrospraying synergism for the nanomaterials industry
News

Electrospinning and electrospraying synergism for the nanomaterials industry

February 8, 2024No Comments4 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Electrospinning and electrospraying synergism for the nanomaterials industry
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Typical applications of EES for the natural environment, energy utilization, human health, and functional regulation. Credit: City University of Hong Kong

Combining two twins-tech—electrospinning and electrospraying—to fabricate novel nanomaterials is an urgent area of research for materials scientists and biomedical engineers, according to a new paper by Professor Hu Jinlian of City University of Hong Kong (CityUHK) published in Matter.

Electrospinning and electrospraying synergism (ESS) can positively impact diverse sectors, from bioengineering and textile technology to medical treatment, defense technology, intelligent manufacturing to energy conversion, argues Professor Hu, who researches electrospinning, electrospraying, nanofibers, nanomaterials, human health and functional membranes.

“This highly integrated ESS technology has received great attention from scientists in the last decade, but we are now facing a critical bottleneck period and seeing hidden problems because of rapid development over the past decade,” explains Professor Hu, who is the Director of the Laboratory of Wearable Materials for Healthcare and holds a joint appointment in CityUHK’s Department of Materials Science and Engineering and Department of Biomedical Engineering.

EES technology has incomparable advantages over other micro-nano material preparation technologies. It offers to reduce the steps needed in micro-nano material preparation technologies, such as 3D printing, lithography, or other chemical methods; it provides outstanding controllability of diameter, orientation, morphology, density, pore size, and chemical properties of nanofibers; and realizes the perfect combination of 1D fiber and 0D/3D micro-nano particles.

However, the challenges are many. They include a need for more systematic generalization, summary and classification, and the disconnection between the research community and the industry.

Hu argues that the focus of ongoing research into combining electrospinning and electrospraying mechanisms tends to avoid the issue of the synergy of the two processes and instead highlights the two separate technologies, glossing over the advantages that can be captured by the possible coordination and cooperation between the two.

See also  How Hyundai's Nanotechnology Advances Are Shaping the Future of the Automotive Industry

“If the concept of EES technology can be generalized, it will undoubtedly give scientists new ideas and inspire many studies. In turn, it can also vigorously promote the iteration and upgrade of EES technology,” Professor Hu argues.

The Matter paper “Electrospinning and electrospraying synergism: Twins-tech collaboration across dimensions” explains that electrospraying and electrospinning are fundamentally similar processes. However, there are differences.

“E-spinning technology is often used as the construction method of the main structure. It should be noted that e-spinning technology can sometimes be used for surface modification or regulation purposes. E-spraying technology is generally used as the control or modification means of material properties,” Professor Hu says.

So, what will EES create in the future?

First, EES technology will significantly enrich the preparation of micro-nano composite materials. It will be possible to prepare complex structures that are difficult to obtain by traditional chemical methods, which is essential in catalysis, drug loading and biological detection.

Second, the EES technology will revolutionize the field of functional apparel. Giving apparel special functions, such as waterproofing, cooling/warming, anti-ultraviolet, health detection, etc., will become a trend of commodity development.

Additionally, industrial assembly lines of EES equipment will enter the factory and complete supply chains, while sales channels will gradually appear.

Using the two processes together rather than separately, researchers can contribute to several fields, for example, in the natural environment field, through purification, recovery, and reuse of water resources using porous membrane materials.

In addition to purifying polluted water, nanofiber membranes based on the EES strategy can be used for water harvesting, directly converting water vapor from the environment into clean water. Applications of EES in energy utilization, human health, and functional membranes are also possible.

See also  New approach to reconfigurable colloidal assemblies paves way for adaptive smart materials

“EES technology has become an important means of preparing micro-nanoscale composite functional materials over the past 20 years. This is a critical period for its ability to overcome major challenges and move toward future success. We should have an open, enterprising, and innovative mentality to promote the next round of the EES technological revolution,” Professor Hu concludes.

Provided by
City University of Hong Kong



Source link

Electrospinning electrospraying Industry Nanomaterials synergism
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Comments are closed.

Top Articles
News

New varactor enhances quantum dot device measurements at millikelvin temperatures

Medical

Efficient intranasal delivery of agomelatine via micellar encapsulation

Research

Drug-filled nanocapsule helps make immunotherapy more effective in mice

Editors Picks

Naturally derived nanoparticles show promise against cardiovascular and kidney disease

June 6, 2025

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

ARPA-H funding boosts Wyss Institute’s RNA therapeutic project

July 16, 2024

Achieving the goal with UV-assisted atomic layer deposition

August 15, 2023

New Material Supercharges Electrostatic Energy Storage – 19x Energy Density

April 19, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel