Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Electricity generation on the nanoscale
News

Electricity generation on the nanoscale

October 23, 2023No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Electricity generation on the nanoscale
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Electricity-generating mechanism of the molecular thermal motion harvester (MTMH). Credit: Yucheng Luan and Wei Li

Wave energy technology is a proven source of power generation, but there is power inherent in every molecule of liquid on Earth, even when the liquid is at rest. At the molecular scale, atoms and ions are always moving. If this nanoscale movement can be harvested, it could be a big source of energy.

“There are vast amounts of air and liquid on the Earth, and their successful harvesting could produce a gigantic amount of energy for society,” author Yucheng Luan said.

Luan and his collaborators tested a molecular energy harvesting device that captures the energy from the natural motion of molecules in a liquid. Their work showed molecular motion can be used to generate a stable electric current. Their work, “Molecular thermal motion harvester for electricity conversion,” appeared in APL Materials.

To create the device, the researchers submerged nanoarrays of piezoelectric material in liquid, allowing the movement of the liquid to move the strands like seaweed waving in the ocean, except in this case the movement is on the invisible, molecular scale, and the strands are made of zinc oxide. The zinc oxide material was chosen for its piezoelectric properties, which means that when it waves, bends, or deforms under motion, it generates electric potential.

“As a well-studied piezoelectric material, zinc oxide can be easily synthesized into various nanostructures, including nanowhiskers,” Luan said. “A nanowhisker is a neat and orderly structure of many nanowires, similar to the bristles on a toothbrush.”

Their energy harvesters could be used to power nanotechnologies like implantable medical devices, or they could be scaled to full-size generators and kilowatt-scale energy production. One key design feature of the device is that it doesn’t rely on any external forces, which increases its potential as a game-changing clean energy source.

See also  Selective operation of enhancement and depletion modes of nanoscale field-effect transistors

“Molecular thermal motion harvester devices do not need any external stimulation, which is a big advantage compared with other energy harvesters,” Luan said.

“At present, electrical energy is mainly obtained by external energy, such as wind energy, hydroelectric energy, solar energy, and others. This work opens up the possibility of generating electrical energy through the molecular thermal motion of liquids, from the internal energy of the physical system that is essentially different from ordinary mechanical motion.”

The authors are already working on the next phase of their design to improve the energy density of the device by testing different liquids, high-performing piezoelectric materials, and new device architectures and by enlarging the device.

“We believe this novel kind of system will become an indispensable way for human beings to obtain electrical energy in the near future.”

Provided by
American Institute of Physics



Source link

Electricity generation nanoscale
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025

Nanoscale biosensor lets scientists monitor molecules in real time

May 30, 2025

How should we govern nanotechnology?

May 29, 2025

Comments are closed.

Top Articles
News

Customizable fluorescent nanoclays offer diverse applications

Dialysis device that uses nanoelectrokinetic technology could be used as portable artificial kidney

News

Characterization Methods of Graphene Oxide Nanoflakes

Editors Picks

New insights show universal applicability of carbyne as a sensor

May 31, 2025

A new molecular model of bilayer graphene with higher semiconducting properties

May 31, 2025

5 Nanomaterial Innovations That Didn’t Deliver (Yet)

May 30, 2025

Scientists identify new 2D copper boride material with unique atomic structure

May 30, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Innovations in core-shell nanoparticles advance drug delivery and precision medicine

March 14, 2025

High-speed atomic force microscopy helps explain role played by certain biomolecules in DNA wrapping dynamics

May 21, 2024

Controlling sound waves with Klein tunneling improves acoustic signal filtration

October 28, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel