Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Electrically defined quantum dots in zinc oxide
News

Electrically defined quantum dots in zinc oxide

December 4, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Electrically defined quantum dots in zinc oxide
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
The structure of the zinc oxide (ZnO) device. A two-dimensional electron gas (2DEG) forms at the (Mg, Zn)O/ZnO interface. By applying voltages to the gate electrodes, we can confine electrons in a quantum dot. (b) An SEM image of the fabricated ZnO quantum dot device. The quantum dot is created in the circled region. Credit: Adapted from Nature Communications (2024). DOI: 10.1038/s41467-024-53890-2

Researchers have successfully created electrically defined quantum dots in zinc oxide (ZnO) heterostructures, marking a significant milestone in the development of quantum technologies.

Details of their breakthrough were published in the journal Nature Communications on November 7, 2024.

Quantum dots, tiny semiconductor structures that can trap electrons in nanometer-scale spaces, have long been studied for their potential to serve as qubits in quantum computing. These dots are crucial for quantum computing because they allow scientists to control the behavior of electrons, similar to how a conductor might control a current of water flowing through pipes.

Until now, most research has focused on materials such as gallium arsenide (GaAs) and silicon. However, zinc oxide, a material known for its strong electron correlation and excellent spin quantum coherence, had not yet been explored for use in electrically defined quantum dots, i.e., those created and controlled using electrical methods.

In this study, the research team was able to manipulate the internal states of quantum dots in zinc oxide using precise voltage control—like adjusting the dials on a radio to fine-tune a signal. This innovation allowed them to observe the Coulomb diamond, a key characteristic of quantum dots, providing insights into the behavior of electrons trapped inside.

A pathway toward new quantum devices: Electrically defined quantum dots in zinc oxide
(a) Observed Coulomb diamonds, which are characteristic properties of quantum dots. Zero-bias peaks are observed at zero bias voltage in the figure. (b) Observed magnetic field dependence. The zero-bias peaks split in a complex manner, which is not observed in conventional Kondo effect. Credit: Adapted from Nature Communications (2024). DOI: 10.1038/s41467-024-53890-2

“The Coulomb diamond is like a fingerprint that helps identify the unique ‘personality’ of each quantum dot,” says Tomohiro Otsuka, an associate professor at Tohoku University and corresponding author of the paper. “By using zinc oxide, we’re opening up new frontiers developing efficient and stable qubits, a cornerstone for quantum computing.”

One of the most remarkable findings of this study was the discovery of the Kondo effect in zinc oxide quantum dots. The Kondo effect, a quantum phenomenon where electron interactions create conduction, typically depends on the number of electrons in the quantum dot. However, in zinc oxide, the researchers observed this effect even when the number of electrons did not fit the usual pattern. This new behavior, linked to the material’s strong electron correlation, adds another layer of complexity and potential to zinc oxide-based quantum devices.

See also  Creating vortices in a superfluid made of light

“The Kondo effect we observed is different from what we typically see in other semiconductors like GaAs,” adds Otsuka. “This difference could help us better understand electron behavior in this new material and improve our ability to control and manipulate qubits.”

Looking ahead, the team is focused on harnessing these new findings to develop practical quantum devices.

Provided by
Tohoku University



Source link

defined dots Electrically oxide quantum zinc
Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025

Zeolite nanopore model links crystal size to metal cluster migration and catalyst performance

June 4, 2025

Spontaneous symmetry breaking in electron systems proves elusive

June 3, 2025

Comments are closed.

Top Articles
News

Innovative nanosheet method revolutionizes brain imaging for multi-scale and long-term studies

News

Aerospace Innovations: Graphene Self-Cleaning Filtration

News

Physicists turn pencil lead into metaphorical ‘gold’

Editors Picks

Ballistic electrons chart a new course for next-gen terahertz devices

June 6, 2025

‘Stealthy’ lipid nanoparticles give mRNA vaccines a makeover

June 5, 2025

Single-layer waveguide display uses achromatic metagratings for more compact augmented reality eyewear

June 5, 2025

2D hybrid material integrates graphene and silica glass for next-generation electronics

June 4, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

Chiro-optical force observed at the nanoscale

October 14, 2023

Printing 3D photonic crystals that completely block light

September 22, 2024

ACE technology enhances single-cell protein detection with advanced signal amplification

July 31, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel