Close Menu
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
What's Hot

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
  • News
  • Medical
  • Technology
  • Nanomaterials
  • Research
  • Blog
    • Nasiol.com
  • Contact
    • Tech7685@gmail.com
Facebook X (Twitter) Instagram
Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily Nanotech – Nanomaterials | Medical | Research | News Stories Updated Daily
Home»News»Discovery of uranium-contaminated soil purification material without secondary environmental pollution
News

Discovery of uranium-contaminated soil purification material without secondary environmental pollution

May 10, 2024No Comments3 Mins Read
Facebook Twitter Pinterest Telegram LinkedIn Tumblr WhatsApp Email
Share
Facebook Twitter LinkedIn Pinterest Telegram Email
Discovery of uranium-contaminated soil purification material without secondary environmental pollution
The adsorption mechanism of uranium (VI) by hexagonal boron nitride (h-BN). Credit: Korea Institute of Civil Engineering and Building Technology

Nuclear energy has long been regarded as a next-generation energy source, and major countries around the world are competing to secure cutting-edge technologies by leveraging the high economic efficiency and sustainability of nuclear power. However, uranium, which is essential for nuclear power generation, has serious implications for both soil ecosystems and human health.

Despite being a key radioactive material, uranium poses significant health risks due to its chemical toxicity to the kidneys, bones, and cells. As a result, both the U.S. Environmental Protection Agency and the World Health Organization recommend allowing and advocating for uranium concentrations in wastewater to be below 30 μg/L.

The Korea Institute of Civil Engineering and Building Technology (KICT) has conducted research on a nano-material-based adsorption process to efficiently remove uranium wastewater extracted from actual radioactive-contaminated soil. They have also proposed its applicability to prevent secondary environmental pollutions.

Radioactive wastewater, an inevitable by-product of nuclear energy generation, requires post-treatment to minimize ecological impact and associated risks. Although this process involves intricate procedures and substantial costs, various methods have been employed to treat radioactive wastewater from uranium-contaminated soil. These methods include chemical precipitation, evaporation, electrochemical techniques, membrane separation, and adsorption/ion exchange.

Among these, chemical precipitation using injected chemical agents is commonly employed in practical applications. However, considering factors such as cost-effectiveness, environmental friendliness, practicality, and renewability, adsorption processes emerge as particularly suitable for uranium wastewater treatment.

Discovery of uranium-contaminated soil purification material without secondary environmental pollution
Actual uranium-contaminated soil. Credit: Korea Institute of Civil Engineering and Building Technology

Boron nitride (BN), a material that has garnered attention as an effective adsorbent due to its high mechanical strength, acid resistance, and significant surface area, is renowned for its impressive performance in wastewater treatment through adsorption processes.

See also  Understanding Graphene in Biosensing Applications

However, research on the actual treatment of uranium wastewater using hexagonal boron nitride (h-BN) has not yet been conducted, leaving the applicability of boron nitride (BN) for real uranium wastewater treatment as an unknown factor.

The research team at the KICT, led by Dr. Rho, Hojung, has comprehensively evaluated the adsorption performance of h-BN nano-materials for uranium wastewater treatment. They explored various operating and water environmental conditions, including exposure time, temperature, initial uranium concentration, background ions (such as NaCl and MgCl2), and Humic acid (HA).

The study suggests that boron nitride (BN) can be effectively applied for uranium wastewater treatment. Additionally, they conducted a reusability test on h-BN, which efficiently adsorbed dissolved uranium, further demonstrating its high reusability.

Furthermore, through the analysis of experimental variables such as initial uranium concentration, exposure time, temperature, pH, and the presence of background ions or organic matter, the research team conducted a ‘feature importance analysis’ using the artificial intelligence-based Random Forest algorithm.

As a result, they discovered that temperature, cations, and organic matter have minimal impact on adsorption performance, marking this study as the world’s first of its kind.

This study is expected to contribute to minimizing potential harm to the environment and human health by enabling more efficient treatment of soil contaminated with radioactive wastewater generated from nuclear power plants.

Dr. Rho said, “The conventional precipitation method for purifying uranium-contaminated soil using chemical agents leads to secondary environmental pollution.”

“Utilizing boron nitride (BN) nano-adsorbents for uranium treatment ensures high reusability without the need for chemical agents, making it a novel environmentally friendly nuclear waste disposal method.”

See also  Pt nano-catalyst with graphene pockets enhances fuel cell durability and efficiency

The work is published in the Journal of Hazardous Materials.

Provided by
National Research Council of Science and Technology



Source link

Share. Facebook Twitter Pinterest LinkedIn Tumblr Email

Related Posts

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025

How Can Nanomaterials Be Programmed for Different Applications?

May 6, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale

May 6, 2025

Comments are closed.

Top Articles
News

Using Single Particle Cryo-Electron Microscopy in Nanoscience

Technology

Silkworms make fluorescent silk after eating quantum dots

News

5,000 atoms are all you need: The smallest solid-state ferroelectricity

Editors Picks

Unique molecule may lead to smaller, more efficient computers

May 9, 2025

Depositing quantum dots on corrugated chips improves photodetector capabilities

May 8, 2025

Ultrasonic nanocrystal surface modification restores stainless steel’s corrosion resistance

May 7, 2025

Structure dictates effectiveness and safety in nanomedicine, driving therapeutic innovation, say scientists

May 7, 2025
About Us
About Us

Your go-to source for the latest nanotechnology breakthroughs. Explore innovations, applications, and implications shaping the future at the molecular level. Stay informed, embrace the nano-revolution.

We're accepting new partnerships right now.

Facebook X (Twitter) Instagram Pinterest
Our Picks

How Have Women Shaped Graphene Research in the Past Year?

February 10, 2024

ROS-Based Nanotherapies: A New Horizon in Glioma Treatment

September 5, 2023

New Hope for Atherosclerosis Diagnosis and Therapy

September 20, 2024

Subscribe to Updates

Get the latest creative Nano Tech news from Elnano.com

© 2025 Elnano.com - All rights reserved.
  • Contact
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.

Cleantalk Pixel